ViewPoint
- Programmer’s Manual
"
XEROX
o
610E00190

December 1986

Xerox Corporation
Information Systems Division
XDE Technical Services

475 Oakmead Parkway
Sunnyvale, California 94086

Copyright ® 1986, Xerox Corporation. All rights reserved.
XEROX @, 8010, and XDE are trademarks of XEROX CORPORATION.

Printed inU.S. A,

"~y

Table of Contents

I

SYSTEM LEVEL INTERFACES

11
1.2

2.1

2.2
2.3

3.1

Introduction

DOCUMENE SELUCLULE « o v v v v e v e vo e et e eaneeseeensosesceenanenenenana.
GEttNg SEAFEEd .+« & e v v e v e e e e e e e e e e e e e e,

Overview

What Is ViewPoint?ttt ittt ittt
2.1.1 User Abstractions et ettt et
2.1.2 Client AbStractionsuuiiniiiinnrneerereenercneannennnnnnenns
2.1.3 System StrUCEULettt et
= 1) oA
Philosophy and Conventionsc..iiiiiiiiiiiieiiiineeinnneeennnenenns
2.3.1 Supported PublicInterfacescoiiiiiiitiiiiin ittt
b 20 o U - 2 T g
2.3.3 Don't PreempttheUser ittt
2.3.4 Don’tCallUs, We'llCall Youiiiiiiiiiiiiii ittt iiienaennn,

Programmer’s Guide

GUIdEttt e tiia e
3.1.1 GuidetotheGuidecciiiiiirriiiii ittt
31,2 Containee\ttt e e
3.1.3 Application Windowsttt i e
B 20 T -3+ L T Y

Table of Contents

T-2

3.2

3.3

3.4

3.5

4.1
4.2
4.3
4.4

5.1
5.2

3.1.5 ManagingaBody Window i ittt 3-4
B I 20 A 0) 3-4
3152 TIPand TIPStarcciiiiiiiiitrerennnnneaneeeenannannnnn 3-5
3153 Contextcc0iinnnn. et e re et et aa e e 3-6
3.1.5.4 Selectioncciiiiiiiiiiiiii it e ir it e 3-6

3.1.6 Property Sheetsand FormWindowcciiiiiiiinecnnnnnnn.. 3-7

3.1.7T XString, et al. ...t i e i e 3-8

3.1.8 XMessageand Attentiono ittt ... 39

31,9 Containers ..ottt e e, 3-9

b I O 1 I T 3 - 3-11

3.1.11 Client-Defined Keyboardsccotiiiiiiiiiniriiinnninennnn 3-11

3.1.12 BackgroundProcessc.iiiiiiiiiiiiii e 3-12

GettingStartedciiiiiiiiiiiiii it it 3-12

3.2.1 Simplest Applicationccooeeiiiiiiiiitiiiiii it e 3-12

322 IconApplicationciiiiiiiiiiiiiiii i e e e 3-13

3.2.3 Operational Notesccoiuiiiiiiiiiiiiiininniieeiennennannnnns 3-15

FlowDesecriptionsiiiiiiinn... e, 3-15

3.3.1 SelectanlIcon et eeeeeeaaseeeaeaneaaesetontoereeteenaareannnnaenns 3-15

3.3.2 PROPSof anlconcoiiiiiiiieniiiiiiiiieiiiiaeeeeeeaanaaannns 3-16

333 0PENanlconcooiiiiiiiiiiiiia.., e, 3-17

3.3.4 COPY Somethingtoanlcon ST 3-17

ProgrammingConventions il 3-18

341 Notifleroiiiiiiii it ittt e e e 3-19

3.4.2 Multiple Processes, MultipleInstaneesccoiiiriiiiinnnneen... 3-20

3.4.3 Resource Managementcoviiiiiimiineeninnrnieennnenneennns 3-20

3.4.4 Stopping Applicationsoiiiiiiiiitiiii e 3-21

3.4.5 Multinationality it 3-21

Summary of Interfacesoiiiiiiiiiiiiiii i i i e 3-22

Application Folder

L0 0T - 4-1

Interface Items i e e 4-1

Usage/Examplesoiiiiiiiiiiiiit ettt iiiiiieteeeennnns 4-2

Indexof InterfaceItemso iiiiiiiiiiiiiiiiii ittt 4-4

Atom

L0 o T 5-1

Interface Itemsottt i i e e 5-1

5.2.1 Making AbOmSiiiiiitieirttieer ittt eereeeeanmanaannnn 5-1

32) o 5-2

5.2.3 Property Listsiiiiiiiiiiriiiiiiii i 5-2

ViewPoint Programmer’s Manual

6.3
6.4

6.1
6.2

6.3
6.4

7.1
7.2

7.3
7.4

8.1
8.2
8.3

8.4

9.1
9.2

9.3

5.2.4 Enumerating Atomsand PropertyListsc.co.... e 5-2
Usage/ExampPlesciiiiitinntnretrnrrresoererenetetoncrsoscsanasssonns 5-3
IndexofInterfaceltems ...ttt iiiiinncenenonnnnnns 5-5
AtomicProfile

OV VI W ... iiiiiiiii it iieeetnneeeersoreanssossassnesanssonnnsesssnnnsnans 6-1
Interface Itemsciiiniiniiiiiiiiieeeliinrreeerronenaseonnnananeans 6-1
6.2.1 BooleanValuesciiiiiiiiiiiiiiiiiiiieeennsisneieneannns 6-1
6.2.2 Integer Valuescciiiiiiiiiiiiiiineeereennenereenanenenasnnnanens 6-1
6.2.3 String Values ittt iiiieerieretteneeearoneannasnnnans 6-2
Usage/EXampPlesovvvettrnnneneernnaseesoansansrasesssosnserononasasnans 6-2
Indexof Interface Itemsoiiiiiniiiiinitiiiiiii it 6-4
Attention

L0 T 7-1
Interface Items i it 7-2
T.2.1 Simple MesSages .. .oouittiree ettt et it 7-2
T.2.2 Sticky MeSSAZeSuiiieiineeeeernnneeeseeonnuonesoeneoeseananesseeans 1-2
T7.2.3 Confirmation MeSsagesccciiiiiiiinieeesnocnraneesnnannnnnns 7-2
724 SystemMenuccoviieiinnnnnnan e tteete ettt 7-3
Usage/Examplesccoiiin P e 7-3
IndexofInterfaceItemsoiirmriiiiiriiri it 7-5
BackgroundProcess

OVerviewcoevveienininnnnens e i, 8-1
Interface ItemS i ittt ittt 8-1
Usage/Examplescooiiunnitiniiinneeniertoaseroaneernsenaeeenssenesons 8-2
8.3.1 PostingMessages Smececacaserararceneaecanaranratnaaanas 8-2
8.3.2 ADOrting ProCeSSeSuutrtnurennrrennunaseaaeecesnaeseasaseeonnnnans 8-2
8.3.3 Examplecciiriiiiiiiiiiiittiotieteittittoacttetitateratseenenas 8-3
Indexof Interface Itemsottt ettt eiiiaaaaen 8-4
BlackKeys

Overview F 9-1
Interface ItemBciiiiiiiiiir it et ittt it et 9-1
9.2.1 Keyboard Data Structuresciiiiiiiiiiiiiiireerenasnnnnnnns 9-1
9.2.2 Getting a Handle to the Current Keyboard oo.... 9-2
9.2.3 Procedurescovitveriinririittiittiiatiitieteietaniannnnas 9-3
L B 2 1 o+ - T 9-3
Usage/Examplescciiiitiininnnreeerneaneseesreerannensesnsseeenannsns 9-3
9.3.1 Defininga KeyboardRecordot 9-3

Table of Contents

T-4

9.4

10

10.1
10.2

10.3

11

11.1
11.2
11.3

12

12.1
12.2
12.3

13

13.1
13.2

13.3

14

14.1

14.2

14.3
14.4

Indexof Interface Itemsoiiiiiiiiiiiiiiiiiiiitiieeraneeaannnnnonans 9-5
BWSAttributeTypes

OV VIBW teunrtutenenaneneeennnnacnsneesannnnoassosessceaonnnnnannnns 10-1
Interface Itemsciviiiiiriiiiiit ittt ieeeeeetaeeaaaeennsneneeenenns 10-1
10.2.1 Available Application Typescciiiiiiiiiiinriennennnnnnnnanns 10-1
10.2.2 ViewpointTypes S AP 10-2
Indexof Interface Itemscovnriiiiitiiiiiirerieiianeneernnnnenanenns 10-3
BWSFileTypes

L0 0 o T A 11-1
Interface Items ... i ittt i rtr et e e 11-1
Indexof Interface Itemso iiiiiiiiiii ittt 11-2
BWSZone

L - T Y 12-1
Interface Items i i i e e e e 12-1
Indexof Interface Itemscciriiiiiiiiiiiiiiiiiiieeiiiininaeennns 12-2
Catalog

L0 -3 o T 13-1
Interface Itemsttt e e 13-1
13.2.1 Finding and Creating FilesinaCatalog 13-1
13.2.2 OperatingonCatalogsccoiiiiiiiiiiiiiiiiiiiiiiinan... 13-2
Indexof Interface Items ittt ittt 13-3
Containee

L0 3 o T 14-1
14.1.1 Backgroundttt e e 14-1
14.1.2 Containee.Implementation0 ittt 14-1
14.1.3 Containee.Datacciiiiiiiiiiii ittt ittt 14-2
Interface Itemsottt e e e e, 14-2
14.2.1 Items for ApplicationImplementors ciiiiiiiirnnnnn. 14-2
14.2.2 Items for ApplicationConsumersccciiiiiiiiiinnnnnnnannnn. 14-7
14.2.3 DefaultImplementationciiiiiiiiiiiiiiraiiinnnnnenen.. 147
1424 AttributeCache ittt ittt it ittt 14-8
Errorsand Signalscoiiiiiiiiiiiiiiii i i i e 14-9
Usage/Examplesooiiiiiiiiitiiiiiiiieeeeninaieeeseeennnnnneennnns 14-9
14.4.1 Sample Containeecoiiiiiiiiiiniiiiieiie it 14-9
14.4.2 ChangeProcexampleccciiiriiirrirrrrrnrnnnininnnnnns 14-11

ViewPoint Programmer’s Manual

14.6

156

15.1
15.2

15.3

15.4

16

16.1
16.2

16.3

16.4

17

17.1
17.2

17.3
17.4

18

18.1

14.4.3 Errorand SignalUsagecciiiiititirinnererennnnareennanes 14-13
IndexofInterface Itemsottt i iiiireriiineanan 14-14
ContainerCache

OV VI W .o i ittt iiienee e et nnnaneeeeeoaaeeeeonnansenesennnsesennnnnnss 15-1
Interface Itemsciiiiiiiiiiiii ittt i iieereetreenennerennanaananan 15-1
15.2.1 Cache Allocationand Managementccoviiiieennnanenncnss 15-1
16.2.2 FillingtheCacheciiiiiiiiiiiiiiii ittt iiiireienaneeenranns 15-2
15.2.3 Item Operationsciiiiiiiiiiiriineeinerennernenronnasnnnsnns 15-2
15.2.4 Item Content Operationsc.coiiiiiiiiiiierrnnnneennnnnnnenn 15-4
15.2.5 MarkingItemsintheCache oottt 15-4
Usage/Examplescoiiiiiiiiiiiieririernrennernniresaeeinsennnsas 15-5
15.3.1 Example of ContainerCacheUse iiiiiinnnnn. 15-6
Indexof Interface Items oo iiiiiiiiiiiiiii ittt 15-8
ContainerSource

Overview e e e eea e e e 16-1
Interface Itemsttt ittt it iientranntenaraannennennanaans 16-2
16.2.1 Handle, Procedures, and ProceduresObject 16-2
16.2.2 Procedures That Operate on Individual Items 16-2
16.2.3 Procedures That Operate on the EntireSourcec...... 16-4
16.2.4 ChangeProc Typesoviiiit ittt iiit i iiieittorarteesnneannaecnnnas 16-6
16,28 EITOrS ...\ttt ttiiiee e eeenteeeeeseaneasesenanoaeeeenanoseeeeannanen 16-7
16.2.6 INLINE S ...ttt it ettt tteanannanenaraneeaneenn 16-8
Usage/Examplesc.coviiiiiiiiierienreneersnnnnneansons it . 16-8
16.3.1 ContainerSource Example e 16-8
16.3.2 Errorsand Signalsttt i i it 16-9
Indexof Interfacelternso i e 16-10
ContainerWindow

[0 . s -1 17-1
Interface Items iiirmniiit i iiiire e eaneee e 17-1
17.2.1 Create and Destroy a ContainerWindowcciiiiiiinnnen 17-1
17.2.2 Itemoperationsc..uiniiiiiiiiiiiiitiiniinneirieeioeennennn 17-2
17.2.3 Operationsona ContainerWindowcccoiiiiiiiiniinnn. 17-3
17.24 BITOTS .. noe ettt e et et ettt e e e e 17-4
Usage/ExXamplesc.iiininiiiereennnereeeeanssseeeonnsoneernnanansnns 17-4
Indexof Interface Itemso i i 177
Context

Overview PN 18-1

Table of Contents

18.2

18.3

18.4

19

19.1
19.2

19.3
19.4

20

20.1

20.2

20.3
20.4

21

21.1
21.2

21.3

T-6

Interface Itemsottt ittt iraeaaareaas 18-1
18.2.1 Creating/DestroyingaContextccoiiiiiiiiiiiiniinnnennnnnnn. 18-1
18.2.2 Findinga ContextonaWindow iiiiiiiiiininnnnnann, 18-2
18.2.3 Acquiring/ReleasingtheContext i, 18-3
18.2.4 BrrOrs ..oiit ittt ittt ittt ittt e e e s 18-3
Usage/ B xamplescouniiirtiiiiiieneettinaneeteeoanacaaosannnenseennnnns 18-4
18.3.1 Examplecotiiiiiiiiiirer et itereetreececnernnnencnenannns 18-4
IndexofInterfaceItemsciiiriiiiirtiiiiiiiiiireaenianennnnns 18-6
Cursor

L8 - o - AP 19-1
Interface Items i ittt it i it ettt e, 19-1
19.2.1 Mgjor DataStructurest iiiiiiiiiirennnnniennnnns 19-1
19.2.2 Settingthe CursorPicture iiiiiiiiiiiiiiniiiinnnnn., 19-2
19.2.3 Getting Cursor Informationciiiiiiiiiiiniiinnnnnnnnn, 19-2
19.2.4 Miscellaneous Operations iiiiiiiiiiiiiannnnnannnn, 19-3
19.2.5 Client-Defined Cursorsc.ccuiiniiiniiiieiieiiieiaaaaaaninn. 19-3
19.2.8 Cursor Picture Manipulation i, 19-3
Usage/Bxamples ... i i i i e e e 19-3
Interface ItemIndex ettt et et e e 19-5
Directory

L0 -5 o T PP 20-1
20.1.1 Predefined Divider Structurecciiiiiiii.... P 20-1
Interfaceltems ittt i, e, 20-1
20.2.1 Adding Itemstoa PredefinedDivider il 20-1
20.2.2 GetDividerHandlettt ittt 20-2
Usage/Exampleso 20-2
Indexof Interface Itemsttt iiiir i iieiieianannns 20-4
Display

L0 3 o T O 21-1
Interface Itemsttt ittt e 21-1
21.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines 21-1
21.2.2 Painting Bitmapsand GrayBrickscciiiiiiiiiiiiiiin., 21-2
21.2.3 Painting points, slanted lines, and curvedlines 21-4
21.2.4 Painting parallelogramsandtrapezoidscoiivvivnnnnn... 21-6
21.2.5 Painting along trajectories, shifting window contents 21-7
Usage/Examples it ittt i ittt i, 21-8
21.3.1 Special topic: Directpainting ittt 21-8
21.3.2 Example 1 i e e e e e 21-9

ViewPoint Programmer’s Manual

21.4

22

221
22.2

22.3

22.4

23

23.1
23.2

23.3

23.4

24

24.1

24.2

24.3

24.4

25

25.1
26.2

25.3

25.4

Index of Interfaceltems e, 21-12
Divider
10 0 o - 22-1
Interface Items ittt i i e i i it e 22-1
22.2.1 Creatingand Destroyingcciiiiiiiiiiereeieeearenensneannsens 22-1
22.2.2 ConvertProcandGenericProco ittt 22-2
22.2.3 AddingandFindingEntries ittt 22-3
Usage/Bxamplescooiiiiierinnreetnrreeeeereneneeeeennnneereeennnnens 22-3
22.3.1 Fragment from DirectoryImpl.mesacoivinnnn.. 22-3
IndexofInterfaceltemsc.iiitriiiiiiiiiiiiirrernrenrennenns 22-6
Event
L0 T S A 23-1
Interface Items oo it it i i e e i e e 23-1
23.2.1 RegisteringDependenciesciiiiiiiiiiiiii i 23-1
23.2.2 Notileationoiiiiiiii i it i i ittt et e e e 23-2
Usage/Bxamplesooiiiiiitinrnterenieeeeeeereeereeannneereoensnnnans 23-3
23.3. 1 Example Lttt i ittt i ettt e e 23-3
2332 Example2 23-4
Indexof Interface Items coiiiiiiiiiiiiii i i i i, 23-5
FileContainerShell
L0 -] o7 T 24-1
Interface Itemms ittt i ittt i i e e 24-1
24.2.1 CreateaFileContainerShell 24-1
24.2.2 OperationsontheShell 24-2
O T Y T d D5 &8 o1) - S AP 24-2
24.3.1 Example: Creating a FileContainerShell and Specifying Columns . 24-2
Indexof Interface [tems ittt ittt ieiiiieeeeennans 24-4
FileContainerSource
OV OIVIBWt ttitiiitieenenenneenoaansenunsesenaseannnsansaanaaananaan 25-1
InterfaceItemsiiiiiiiiiiirinennieerererreenanrreeeconnnnnnns 25-1
25.2.1 Creationciiiiiiiiiiiiiii it ittt et 25-1
25.2.2 Specifiying Columnscotiiietiritiinineeeerrnreneeeennnnneeenns 25-2
25.2.3 Operations on Sourcesvivtiret ittt ittt 25-3
25.2.4 Commonly UsedColumnsiiiiiiiiiiiiiiiinnennennnnnnn 25-4
Usage/ExXamplescouuuuieurneeenneresorooneasoneseneessonasansesanneens 25-5
25.3.1 Example: Specifying Columns using FileContainerSource 25-5
" IndexofInterfaceltems ittt i i e 25-8

Table of Contents

26

26.1

26.2

26.3

T-8

FormWindow
OV BIVIBW ..ttt ittt ittt iiet et ennaeeaseenanaeaaeeaonnnnasasnenaseaesnnas 26-1
26.1.1 Creatinga FormWindowciiiiiiiiiiiiiiiiiiiiiiinannnnnann 26-2
26.1.2 MakingFormItems iiiiiiiiiinriiiiiireereeenaanneeannns 26-2
26.1.3 Gettingand SettingValuescoiiiiiiiiiiiiiiiiiieinnnann 26-2
26.1.4 "Changed" BOOLEAN ittt iiiininneeeenennnns 26-3
26.1.5 Visihilitycouuunnriiiiiiiiiiiiaiieieitiiiieiiteanaaaaanas 26-3
26.1.8 Layoutoiiiitiiii i i i et e et e, 26-3
Interface Itemecciitiiiiiii ittt iieieeer e etenaen e, 26-4
26.2.1 Creatinga FormWindow,ete.ciriiiiiiiiiiiieercnnenn 26-4
26.2.2 MakingFormItems,ete.t 26-6
26.2.2.1 BooleanItemsttt i i e 26-8
26.2.2.2 Choiceltemst 26-9
26.2.2.3 CommandItemsc.ciiiiiiiiiiiiii i 26-12
26.2.2.4 Tagonlyitemsccciiiiiiiiiiiiiiiiiiinaaaannn 26-13
26.2.2.5 Textand NumberItemsc.L. 26-13
26.2.2.6 WindowItemsccoviiiiiiinrnnnninenrerinnnannnn 26-16
26.2.2.7 DestroyinglItemscoiiiiiiiiiiiniiiiniinneenenns 26-17
26.2.3 Gettingand Setting Valuesc.coiiiiiiiiiiiiineiiiinnnnnans 26-17
26.2.3.1 Getting Valuescciiiiiiiiiiiinennennninnnnnn. 26-18
26.2.3.2 Setting Valuescoeeeeeiiunieneeinnnnnns. il 26-19
26.2.4 "Changed” BOOLEAN iiiiiiiiiiieenteiianeanrennnnanas 26-20
26.2.5 Visibilityc.ccooiuniiiiiiiii ittt ettt e, 26-21
268.2.6 Layoutt i et aee e 26-22
26.2.6.1 Flexible Layoutccoitiiiiiiiiiiiiiiiiiieinnnennnn 26-22
26.2.6.2 TabScoviiiiiitiit et e 26-24
26.2.6.3 Fixed Layoutcoviiiiiniiiiiiiiiiiiiieinineenennnn, 26-25
26.2.7 Saveand Restore it e e, 26-25
26.2.8 Miscellaneous TYPESottt ittt iieirannennnn 26-26
26.2.9 MiscellaneousItemOperationsciiiiiiiiiiannn.... 26-26
26.2.10 NEXT KeYvuovuiunuereenneneuenenreeeeeeeeeaneeesseerneencnnns 26-28
26.2.11 SIGNALsand ERRORSciiiiiiiiiiiiiiiiiiairaiiaaanannn. 26-29
26.2.12 Multinationalitemsc.ciiiiiiiiiiiiiiiiiiiiiiiieiaa 26-30
Usage/Bxamplesovititiineretiiinaeneneeeereneneseseeeoannaeeennans 26-31
26.3.1 CallingChangeProcsc.iiiiiiiiiiiiinnieeorninneeeeeenn, 26-31
26.3.2 Creatinga Simple FormWindowcciiiiiiiiiiiiiiinannn, 26-31
26.3.3 Specifying Bitmapsin Choiceltems 26-33
26.3.4 The NEXT Keyand TextItems e 26-33
26.3.5 Window Items (Including Interaction with the NEXT Key) 26-34
p L3R B 5 6 1 - 26-35
26.3.7 Savingand Restoringltems, 26-36

ViewPoint Programmer’s Manual

26.4

27

27.1
27.2
27.3
27.4

28

28.1
28.2

28.3
28.4

29

29.1
29.2

29.3

29.4

30

30.1
30.2

30.3

Index of InterfaceItemsttt 26-37
FormWindowMessageParse
L0 - a0 - 27-1
InterfaceItemsottt ittt 27-1
Usage/Examplescoiiiiiiiiiiiiiiiiineeereerrnerentrnnrnnnnnnnnes 27-1
Indexof Interfaceltems 27-3
IdleControl
L0 s 1= 28-1
Interface Itemsciiviiiiiiiiii ittt ittt eirntnanan 28-1
28.2.1 DesktopPlug-in i i i i i i e e e 28-1
28.2.2 Greeter Plug-In ittt e ittt e it 28-1
28.2.3 Idle Loopoiiit ittt i i e e e 28-2
Usage B ramplesttt itietiteee e aitanee it 28-2
Indexof Interface Items i ittt i ittt iiaannn 28-3
KeyboardKey
OV eIV W ... ittt iiiiiiee et itaneaeeeannaseaeeseannnneresenneennnnn 29-1
‘Interface Items i i i i i i e i e i et 29-1
29.2.1 System Keyboardsc.covnn... ettt e, 29-1
29.2.2 Client Keyboardscciiiiiiiiiniiiiiiiiiiiiiiananananennnnnns 29-2
29.2.3 Setting and Enumerating Keyboards 29-2
29.2.4 Keyboard Window Plug-In ittt i, 29-3
29.2.5 Errors e e e e sa e as e e ettt e et 29-4
Usage/ExXamplesuiiiiuiiiiiiernneeenereeneecensesseesunnssneeennns 29-4
29.3.1 AddToSystemKeyboardsExampleciiiiiriirnnnnn. 29-4
29.3.2 Special Keyboard Examplec.cc0irueiiiniiiiiinninnninnennnnns 29-4
29.3.3 Registering Multiple Client Keyboards Example 29-5
Indexof InterfaceItemsc.coiiiiiiiiiiiiiiiiiiiiirennreanennennnns 29-6
KeyboardWindow
OV VI W ... ittt iiiiiiee et ttnnaaeeeennnnseseessnaneeessannneannns 30-1
Interface Items ittt it i i ittt 30-1
30.2.1 Default Valuesc.cceuuriuiiiiiiiiiiiiiiieerennsiensenaneanss 30-1
30.2.2 Geometry TableStructurecoiiiiiiiiiiirierrnnnneernnnenens 30-2
30.2.3 Bitmap Structurec...uuienennernnnnreeenennnnaanannaaaaans 30-3
30.2.4 Getting to the Keyboard WindowHandle 30-3
Usage/EBxamplesoiieiiiiiiiiereeeennereonnecenneoeassoneeanaesnnns 30-3
30.3.1 Using DefaultPictureProccciiiiiiiiiiereiinnnnneenennns 30-3
30.3.2 UsingdefaultGeometrycccciiiiiiiiiiiiiiininnnnennn. 30-4

Table of Contents

30.4

31

31.1
31.2
31.3

32

32.1
32.2

32.3

32.4

33

33.1
33.2

33.3
33.4

34

34.1
34.2

34.3
34.4

35

36.1
35.2

T-10

30.3.3 Sample Geometry TableEntriesccciiiiiiiiiiiiinienen., 30-4
Indexof Interface Itemscoiitiiiiiiii it i it iiteeinraenenennsannnnenns 30-5
LevellVKeys

VO VI W ..ottt ittt it ettt te e ee e seoeenessaneeeanassnsenenrsennnennnns 31-1
Interface ItemEciiiii ittt ittt it iitneneennneasennosenennnnnnnnes 31-1
Indexof Interface Itemsvittii it ittt ittt ettt teeneeennenn 31-3
MenuData

L0 3T o T- 32-1
Interface ItemS ..o ittt ittt e i it i, 32-1
32.2.1 MenuandItem Creationc.ciiiiiiiiniiiiiiiinrniinnnnnnns 32-1
32.2.2 MenuManipulationttt i it e 32-2
32.2.3 Accessing Data il i i et i e 32-3
Usage/Examplesuuuuuuniiiiiiieeeereenanannannnaeannnn 32-4
3231 Example 1 ettt 32-4
3232 Example2iiiiii i e e e e e e 32-5
Indexof Interface Itemsttt it ittt ittt ie e ennenannnen 32-7
MessageWindow

L0 3 1= 33-1
Interface Itemaottt i it it i it ettt e 33-1
33.2.1 Create, Destroy, ete. ..ottt ittt tttnene e, 33-1
33.2.2 Posting mesSsSagesoviiiiirerrereerererenereeeeeananeenrenenns 33-2
Usage/BXampleso.uiiiiiiiiiiiie ittt 33-2
Indexof Interface Itemsoiiiiiiiirii ittt ittt en it nanarnnnen 33-4
OptionFile

L0 3T a0 T3 A 34-1
J BIUA=Y o 22 10 =3 - o o 1< S AN 341
34.2.1 Getting ValuesfromaFile i iiiiiiiiiiiiii., 34-1
34.2.2 Current Profilesccitiiiitiiii it i it i e i 34-2
34.2.3 EnumeratingaFile i ittt it 34-2
BT N) 9+ o S 34-3
Usage/Examplesueiiiiiiiiiii it eiiiinanaareneannnanananenns 34-3
Indexof Interface Itemscooiiin ittt ittt ettt eneenenananns 34-5
PopupMenu

L0 3 T 35-1
Interface Itemis ...ttt i e e e ettt e 35-1

ViewPoint Programmer’s Manual

356.3

356.4

36

36.1
36.2

36.3
36.4

37

37.1
37.2
37.3

38

38.1
38.2

38.3

38.4

39

39.1
39.2
39.3
39.4

40

40.1

(SR 053 1 1) LT S 35-1

35.3.1 ERampleitiiiiiiii ettt et it 35-1
Indexof Interface Itemsttt ieiiiinnerrennen 35-3
ProductFactoring

OVeIVIBW ...\ttt ittiiiineettenienaeesstosennnnacesosssannusaaaseesnnnnnns 36-1
Interface Itemsc..oiiiiiniiiiiiinnierionennooneoeerieennnnnnnenennns 36-1
36.2.1 Products and ProductOptionsiiiiiiiiiiiiiiiiinnnnnn.. 36-1
36.2.2 CheckingforanEnableOption i, 36-1
36.2.3 Describingan ProductandanOption 36-2
B6.2.4 BIrOrSttt iititiietteeanerseeoiateataaaaara e 36-2
Usage/Examplescoouiiinriitiiiiieeereenneeeeenannereonnnneneeennns 36-2
Indexof InterfaceItemscoiiiiiiiiiiiiiiii it 36-4

ProductFactoringProducts

OV VI W ..ottt ittt ittt itteeeenserneenaennssseessenennonnennens 37-1
Interface Items ...ttt i e e e e 37-1
Indexof Interface Itemsottt ittt iiieieernnnnns 37-3
PropertySheet

Overview B B DU 38-1
Interface Itemsovitiiitii ittt ettt et tae et eeaneeenn. 38-2
38.2.1 Create a PropertySheet (Nota LinkedOne) 38-2
38.2.2 Menu Items and the MenultemProcc.ciiiiiiiiiiinnn... 38-3
38.2.3 Linked PropertySheets ittt 38-4
38.2.4 Miscellaneousc.iiiiiiiiiniiiniiireiirr e, 38-7
38.2.5 Signalsand Errors e e co.. 387
Usage/Bxamplesciuuoniiiinniiitieieonerneneennireasiosseeaeeeenanens 38-8
38.3.1 Flow Description of Creating a PropertySheet 38-8
38.3.2 An Ordinary PropertySheetcoiiiiiiiiiiiiiiiiinnnnn, 38-9
Indexof Interface Itemsottt ittt 38-12
Prototype

L0 -5 o T 39-1
Interface Itemsciiiiiitiiiit ittt ettt et e, 39-1
Usage/EXampPlesciiiiiiinennninainotnanenaeeeaseaaseaoeeseannenenns 39-2
Indexof Interface Itemsciiiiiiiriiiiii ittt iianenrernnnnnn. 39-3
Selection

OV VIeW .. ittt ittt ittt et a et eat et ennaneenannn e, 40-1

T-11

Table of Contents

40.2

40.3

40.4

41

41.1
41.2

41.3

T-12

40.1.1 Requestors and Managersc.oeeeerecranononoaassnnncnessss 40-1
40.1.2 EssentialsforaRequestorciiiiiiiriiiierinrrennennnnns 40-2
40.1.2.1 Convert, Target, Value, Enumerate, CanYouConvert 40-2
40.1.2.2 Resource Allocation/Deallocation Considerations 40-3
40.1.3 EssentialsforaManagerciiiierrrnienrerrnnneneennnans 40-3
40.1.3.1 Set, ConvertProc, ActOnProc, ManagerData 40-4
40.1.3.2 More on Selection.Value, ValueFreeProc, and ValueCopyMoveProc 40-4
40.1.3.3 Storage Considerations for ConvertProc 40-5
40.1.3.4 Storage Considerations for ManagerData 40-5
Interface Itemscoiiiiiiiiiiiiiii ittt ittt 40-5
40.2.1 Requestoritems ittt e it e 40-5
40.2.1.1 Convertcovniiiii i e e 40-5
40.2.1.2 QUETY ..ottt ittt ittt i i e e, 40-8
40.2.1.3 Enumeration ittt it 40-10
40.2.1.4 Copy,Move,Free,etc.cviiriiiiiiiiiiinnnnnnn. 40-11
40.2.2 ManagerItemso i, e eeeeeaeeraaaeaa 40-12
40.2.2.1 St .ttt e e e e, 40-12
40.2.2.2 ComVerSionttt 40-13
40.2.2.8 QUETY . ..iviiiirtiit ettt eatetaaa ettt 40-13
40.2.2.4 Enumerationciiiiiiiiiiii i i e, 40-14
40.2.2.5 Free, Copy, Move,ete. ettt e, 40-14
40.2.2.6 ActONiiiiiiit e 40-17
40.2.2.7 Saveand Restorecciiiieniiiiiiiiiniiiiaaaaaa, 40-18
40.2.2.8 Miscellaneousc.cuuuiuiiiiinnnnnonnnannnannanns 40-19
L) B D7 5 1) o~ S 40-20
Usage/Examplesoiiiiinriiiiiiieiiiiaeiieieeiinanannnns ... 40-20
40.3.1 What SelectionIs NOTiiiiiiiiiiiiiiiiiiiiiiiiaananannnn, 40-20
40.3.2 Random Detailsc. .ottt e e e 40-20
40.3.3 Examples of Storage Allocation for Manager's ConvertProe 40-21
40.3.4 Detailed Flowchart of a Selection.Convertoeveee... 40-22
40.3.5 Sample ConvertProcandRequestorcccvvvinnn. 40-24
40.3.6 Sample Useof Enumerationcciiiiiiiiiriiinennnnnn. 40-27
Indexof InterfaceItemscccoiiiiiiiiiiiiiiiiiii et 40-29
SimpleTextDisplay
L0 =) o - O 41-1
Interface Items i il il i i ittt it ittt ittt 41-1
41.2.1 Simplest WaytoDisplayTextccciirriiitiirrnnnnnnnnnnns 41-1
41.2.2 StringIntoBuffer i e i e 41-2
41.2.3 Measureand Resolve o iiiiiiiiiiiiiii i ittt 41-4
41.2.4 Multinational Items it i e 41-5
Usage/Examplesoiiiiiiiriiiiiiiinerernneneerennneneennnnnsennnns 41-6

ViewPoint Programmer’s Manual

41.4

42

42.1

42.2

42.3
42.4
43

43.1
43.2

43.3

43.4

44

44.1
44.2

41.3.1 StringIntoWindowo iiiiiiiiit, et iiereeeana. 41-6
41.3.2 StringIntoBuffer i i i 41-6
Index of Interfaceltems et eeetteareeaea e, 41-8
SimpleTextEdit

L0 =) o T AP 42-1
42.1.1 CreatingFields ...t e 42-1
42.1.2 DisplayingaField il it eiiiianeanns 42-2
42.1.3 NotifyingaFieldttt ittt iiiiaeeeannns 42-2
Interface Itemsc.uuurnuinntiiiiiirtiiiittaietreieeaaaaanaeeaeaa, 42-2
4221 FieldContextcuveeriireeireeeneeenaeeocenneenunnnnnnnannnnns 42-2
42.2.2 CreatingFieldscooiiiiiiiiii i i ittt i ittt 42-3
42.2.3 DisplayingaField i e iiiiaa, 42-4
42.2.4 NotifyingaFieldcoiiiiiiiiiiiiiiii ittt 42-5
42.2.5 Miscellaneous Get and Set Procedures o... 42-6
42.2.6 ChangeSizeProcciiiiiiiiiiiinetiiiiineeettineeerrrnnaaannns 42-9
T2 8 0 ¢) «- S 42-9
Usage/ B amplesoiiiitit ittt ttteeitieetteenaae e arneernnenns 42-9
42.3.1 Selection Managementcciiiieiiriiinniertiiieieriniiaaaas 42-9
Indexof Interfaceltemscoiiiiiriiiiinnnneinnnannnnnnnnns 42-10
SimpleTextFont

L0 =) o T 43-1
Interface ItemsScouurnnennnniernenerrnnnneaanaaanonaaneenennn 43-1
43.2.1 System Font i e e e, 43-1
43.2.2 Client-Defined Charactersccoiiiiiiiieirinninnnnnnennn. 43-2
43.2.3 SignalsandErrorscciiiiiiiiiii it e 43-2
Usage/Examplescoiiinietiiiiniinetrninnnaereeeeeenannnnraeeenanas 43-2
43.3.1 Adding a Client-Defined Characterccviiiinnn. 43-3
43.3.2 AcquiringtheSystemFontco ittt i, 43-3
IndexofInterfaceItemsc.iiiiiiiiiiiiiiiiiiiiiiiiireiieaaeaanns 43-4
SoftKeys

L0 Y =) PR 44-1
Interfaceltemsccoiiiiiiiiiiiir ittt P 44-1
44.2.1 Data Structures for SoftKey Labelscoiiiiiiiiiinnnnnrennenn. 44-1
44.2.2 Creatingand DeletingSoftKeysccciiiiiiiiiiiiinnnenn.. 44-2
44.2.3 Highlighting and Outlining a SoftKeys Keytop Picture 44-3
44.2.4 Retrieving Information About a SoftKeys Window Instance 44-4
44,28 BITOrS ...ttt it ittt e eeeeasseeaaasseeoseesosnanaesaaansarsesseanas 44-4
Usage/Examplescccciiiiiiinnannnnn et ettt 44-4

Table of Contents

44.4

45

45.1
45.2

46.4

46

46.1

46.2

46.3
46.4

47

471

T-14

44.3.1 Graphics Examplecoiiiiiiiiiiritrr i iiirrrerreereeeennnnnns 44-4
44.3.2 Keyboard Manager Exampleccc000... e 44-5
Indexof InterfaceItemsc i vttt ittt it i, 44-6
StarDesktop
L0 7 s T A 45-1
Interface Itemsc.c.iiiiiiiiiiiiii ittt iiieieeiinennnneennananas 45-1
45.2.1 General ... et it iie e, 45-1
45.2.2 ABOMIS it iear e e i, 45-2
Usage/ERamplescouuuiiiieettiiiieeernaneeeeeenneeeesenaneneeenns 45-3
45.3.1 Adding a ReferencetotheDesktop L., 45-3
IndexofInterfaceltems ittt 45-4
StarWindowShell
L0 Y o T PP 46-1
46.1.1 Client Overviewiitriiiiititiiineereeennneneeeennnneeeennnnss 46-1
46.1.2 Creating a StarWindowShell, Handles,ete. 46-2
46.1.3 Body Windowsiiiuiittiniininnneneneennnnneneeenannnnnnns 46-3
46.1.4 Commandsand Menusooiiinreeerennnnnnneeeneeannnnnnns. 46-4
Interface Itemsiuiiiiiiiiiii ittt naianaaas 46-4
46.2.1 Create a StarWindowShell,etc. 46-4
46.2.1.1 IsCloseLegalProcccoiiiiiiiiiiinnrreennnennnnnnns. 46-8
46.2.1.2 Miscellaneous Get and Set Procedures 46-8
46.2.2 Body Windowsciiinittiiiiiiiiiii ittt e, 46-9
46.2.3 CommandsandMenuscciiiiiiiiiiiiii i, 46-12
46.2.3.1 PusheeCommands i iiiiiiiiiiiiiiiiiirnnnnnnn. 46-13
46.2.4 TransitionProcscciiiiiiiiiriii it i it e 46-15
46.2.5 Scrolling ...ttt it i e e, 46-16
46.2.6 Push, Pop, etC.oiitiitiiiii i e e 46-20
46.2.7 Limitand Adjust Procscoiiiiiiiiiiereiinaanineennnnn, 46-22
46.2.8 Displayed StarWindowShells e 46-23
Z- 330" 35° B0 13 v o~ S 46-23
Usage/Examples ettt et e ettt e e e 46-23
Indexof InterfaceItems iiiiiiiiiiiiiiiiiii i i, 46-25
TIP
L0 -5 o T 47-1
47.1.1 Basic Notification Mechanism i iiiiiiininiinennnne. 47-1
0 R 1)T 47-2
47. 1.3 Input FoCuS ...ttt e e 47-2
47.1.4 Periodic Notification i i i 47-3

ViewPoint Programmer’s Manual

41.2

47.3

47.4

48

48.1
48.2

48.3

48.4

47.1.5 Call-Back Notification and Setting the Manager 47-3
47.1.6 Attentionand User Abort i i il ittt 47-3
47.1.7 Stuffing InputintoaWindow ittt 47-3
Interface Items i iiiiiiiiiii ittt irereeeerarreennnnnannnn 47-4
4721 Results ittt i i i i it it ettt e 47-4
47.2.2 Notify Procedureiitiiiniiineninerrneerneenneennnennnns 47-4
4723 TIPTablesciiiiiiiiitiiiniiinreerneaaearneeeeanennnnnnns 47-5
47.2.4 Associating Notify Procedures, Tables,and Windows 47-5
47.2.5 Creating and DestroyingTablesccoiiiiiiiiiienin... 47-6
4726 InputFocusttt ittty 47-7
47.2.7 Character Translationciiiiiiiiiiiiiiiiiiieannnnnnnnns 47-7
47.2.8 Periodic Notification i ittt 47-8
47.2.9 Call-Back Notificationc.ciiriiiiiiiiiiiiiiiiiinernneenennn 47-8
A7.2.00 Manageroiiittintttneetnenrennaeeeestooneennacannenarenenenans 47-9
47.2.11 User Abort O 47-9
47212 Attention ...ttt e it it iaiaaa e 47-10
47.2.13 Stuffing InputintoaWindowottt 47-10
7Y 30 00 1] o o) - SO 47-11
47.2.15 MiscellaneousItemsciiiiiiiiiiiiiiiiiiinnennnnnn.. 47-11
47.2.16 “Look-Ahead”ttt i e e e e, 47-12
Usage/Examples e e reee et e e 47-12
47.3.1 ‘ Periodic Notificationottt ittt iiinnn. 47-12
47.3.2 Syntaxof TIP tablesiiiiiiiriiiiiiiiiiiiiiiiniieenens 47-13
47.3.3 Semanticsof Tablesccourriiiiiiiiiiiiiiiiiiiaianennrenn. 47-14
47.3.4 ExampleTablec.cciiiiiiiiiiiiiiiiiiiiietiieinaniinnnnns 47-17
47.3.5 Simple TIPClientExample,ottt 47-17
47.3.6 Modifying an ExistingTIPClientc it 47-19
47.3.7 Macro PacKagecivvriintiiiiriieetetetiten i tan i 47-20
Indexof InterfaceItemsc.c.urunniiiiiiiirieirarineneanaeeannnn 47-21
TIPStar

L0 o -1 O 48-1
Interface Itemscoiiiiiiiiiiiiiiii it iireret i iiiinineeennnerennnnnns 48-1
48.2.1 TheTIPStar Structurec.cvvieereintenecconrannnnnnnsnnenns 48-1
48.2.2 Installingand RemovingTablescoiiiiiiiiiiiiiiinnnnnnn. 48-2
48.2.3 Retrieving PointerstoInstalledTablest 48-3
48.2.4 Mouse Modesciiiiiiinnunrnerennnnneeerrronasaennnneersonns 48-3
Usage/EXamplesovutiititiiiiterenennsseenconnnoreseossnetoesnnaessonns 48-4
48.3.1 WhenPushTableIsCalled iiiiiiiiiiiiiinnnnnnn 48-4
48.3.2 When StoreTableIsCalledcoiiiiiiiiiiiiiiiiiinrinnnnnnns 48-5
48.3.3 WhenPopTableIsCalledccoiiiiiiiiiiiii ittt iinnnnn 48-7
Indexof InterfaceItemsottt iiieneerannnaeeannns 48-8

Table of Contents

49

49.1
49.2

49.3

49.4

50

50.1
50.2
50.3

50.4

51

51.1

51.2

51.3

51.4

52

52.1
52.2

T-16

Undo

L0 S o TP 49-1
Interface Itemsc. ..ttt ittt 49-1
49.2.1 Application’sProcedurescciiiiiiiiiiiiiiiiiiiiiiee ... 49-1
49.2.2 Implementation’sProceduresc.cciiiiiiiiiiiiiiiiiiiiiaa, 49-2
Usage/Exampleseunuuniniuiinneeerereeessaasaaiseensseosesnanans 49-2
49.3.1 Examplec.ciitiiiiiiiiiiiiiitie ittt et e, 49-3
IndexofInterfaceItems i iiiiiiiiiiii it ittt 49-4
UnitConversion

L0 -0 s - 50-1
InterfaceItemsc..oniiiii i i i e 50-1
Usage/ B Xamples ...ttt iiieiiiaeeetraeeeeeenaenesennnnenenns 50-1
50.3.1 ConvertingFont Valuesc.ciiiiiiiiiiiiiiiiiiiinnennnnnn. 50-1
Indexof Interfaceltems i i 50-3
Window

L0 -3 o T AP RPR 51-1
51.1.1 Window Creationcoiiiiiiiiiriiiiiiiiiiiiiineneanennnn, 51-1
51.1.2 Child Windows and the Window Tree e, 51-1
51.1.3 Paintingintoa Window it i e, 51-2
51.1.4 Bitmap-under i ittt 51-3
51.1.5 Window Panescciiiiiiiiiiiierioeteenentoneetnensnnennnns 51-3
Interface Itemsot i i it e e e e, 51-3
51.2.1 Basic Data Types and Utility Operationsc ... 51-3
51.2.2 Window Creation and Initialization 51-5
51.2.3 Access to and Modification of a Window’s Properties 51-6
51.2.4 Window Tree and Window Box Manipulation 51-7
51.2.5 CausingPainting i e 51-10
L A I o i TP 51-11
51.2.7 Special Topic: Bitmap-Underccciiiiiiiiiiiiinnnnnn.. 51-12
Usage/Examplesuununneaanteernnennaaenaseneeananeanss 51-13
51.3.1 Display Proceduresand MONITORsoiiiiiiiiininnnns. 51-13
51.3.2 Exampleiiiiiiiiiiiii i i i it e ettt 51-14
IndexofInterfaceltemscoiiriiiiiiiiiii it 51-16
XChar

L0 T 52-1
Interface Itemsttt naantiranernaaarereaeeas 52-1
52.2.1 Character Representationcciiiiiiiiiiiiinnnnnnnnn.. 52-1

ViewPoint Programmer’s Manual

52.3

52.4

53

53.1
53.2

53.3

53.4

64

54.1
54.2

54.3
54.4

656

56.1

556.2

56.3

52.2.2 JoinDirectionand StreakNatureviiiiiiiiiirrnnenrnnnnn. 52-2
5y 3 T 0 - - T 52-2
. Usage/Examplesutiiiiiiiniiteeeeenreinnnnoeeeeresnnnnnnnennnsn 52-3
52.3.1 Creatingan ASCIICharacterccccviirirennnnnnnnrernnnnns 52-3
52.3.2 Creatinga Greek Characterc.ciiiiiiiriinrnnnennernnnnns 52-3
Indexof Interface Itemsc.cciuiuiiiiiiiiiiiiiet e iriereenenennnnnns 52-4
XCharSets
L0 - o - A AP 53-1
Interface Items i i i i i i ittt 53-1
B53.2.1 Sets ...ttt e i i i ittt et e, [P 53-1
53.2.2 Enumerationof CharacterSetst iiiiiinnnnnn 53-2
Usage /B xamplesoiiuiiiiintiiertneneneeonneeseeesnessnenenneennns 53-2
53.3.1 Creatinga Greek Character iiiiiiiiiinnnnnnn. 53-2
Indexof InterfaceItemsc.couuiuiiiiiiiiiiiiiitiieiaenerenennennas 53-3
XComSoftMessage
L0 Y T T A 54-1
Interface Itemsiiiiiiiiiniiiriiniinneoeetneennnnrnneeeeenannanns 54-1
§54.2.1 ObtainingMessageHandle i iiiiiiiiiiiiinnnnn, 54-1
54.2.2 MessageKeys e ee ettt et et 54-1
Usage B Ramplesovutiinretiiiete et eneeteenanneeretnanar e 54-2
Indexof InterfaceItemso iiiiii ittt ittt 54-3
XFormat
L0 - o T O 55-1
55.1.1 Major Data Structuresiitriiieitineneerrnnnnneeennnenenns 55-1
55.1.2 Operationsciiiiiiiiiiiiiiit ittt it ittt e 55-1
InterfaceItemsiiiiiiiiiiiiiiii ittt iiiiernanannanaanens 55-2
55.2.1 Handlesand Objectscoiiiiiiiiiiriiirrinrrennennnnennnnns 55-2
556.2.2 Default Output Sink oottt it ittt tnnaenenes 55-2
55.2.3 Text Operationsccoviiiiiiiiinrrrrnierenrenaneaeeonnaeennnns 55-2
55.2.4 NumberFormatscciiiiiitinunnnnennnnnsanaanneaneeaneennn 55-3
55.2.5 NumericOperations iiiiiiiiiirrrrninrronnencennns 55-4
55.2.6 Built-inSinks ...ttt ittt 55-4
55.2.7 Date Operationciuiiiiiiieiiiriireeneeronneonserneennnenns 55-5
55.2.8 Network DataOperationscciiiiiiiieinnnnnn. P 55-5
55.2.9 NSString Operationscciiiiiiitinineerennnnenerenneneennns 55-6
55.2.00 Errors ...ttt it et e e 55-6
Usage/EXamplesoiitiririiieiet i neeeeanennneeeneeeennenneennenenns 55-6
55.3.1 UsingBuilt-in Sinks ittt ittt ittt 55-6

Table of Contents

55.4

56

56.1
56.2

56.3

56.4

57

57.1

57.2

57.3

57.4

58

58.1

T-18

55.3.2 Creating New FormatProceduresccciviiiiieennnnnn. 55-7
Indexof Interfaceltemsttt eianiiiaanan 55-9
XLReal
L0 -0 o T O 56-1
InterfaceItemsoiiiiiiirnriiinriarneeenannnanoananaanaannnanan 56-1
56.2.1 Representationiiiiiiiiiiiiiiiiiitt ittt et 56-1
56.2.2 ConVerSIONoviiiiiiitteeeniteeneeneaenenennnnnnanonnennnnns 56-1
56.2.3 Input/Outputviiiii i i i i e e ettt e, 56-2
56.2.4 CompariSomnouutiirtnetitennnnunenennnnennananaaaaeaaanenees 56-4
56.2.5 Operationsc.iiiiurirtiiieriereiinrtee et 56-4
56.2.6 Special NUmMbEIsottt ittt eiinineeennnnn.. 56-5
T 0 o 1 - 56-5
56.2.8 Special Constantsc.oiiiiiiiiiii ittt ittt 56-6
Usage/ /B xamplesoiiiitiiiiiitiiiiiie it tttmtne e iteiieareraaeeeannnn 56-6
56.3.1 Special NUmMbersccoiiiiiiiiiin ittt rerreenreenennnnns 56-6
56.3.2 Timesof CommonOperationsccvtiiiiiiriiiiiiirinneeennn, 56-6
Index of Interface Items et ittt et e e . 56-7
XMessage
L0 1S T 57-1
57.1.1 Message Usagecoviiiiiiiiiiiniiee e eeeaterreenennnnnnnns 57-1
57.1.2 Message Compositionand Templatesciiiiiin.. 57-1
Interface Items ittt et e 57-2
57,201 Handlescooiiiiiiiniiiniiiiiiie i iriiie e etniaeenennnaannns 57-2
57.2.2 Getting MesSagesuuiiiiiiererrr e teternrerrrreneenrnnnnns 57-2
57.2.3 Composing Messagesuuennnnnnnnennnninnerennanneens, e 57-2
57.2.4 Defining Messagesouuuiniiinierineniieeeereneninnnneeeennns 57-3
57.2.6 Obtaining MessagesfromaFile i, 57-4
57.2.7 DestroyingMessageHandlesc..0iiiiiiiiiiniiinnnnnnn. 57-5
B7.2.6 BITOr ..ottt i i it ittt e e et 57-5
Usage/ERampleso.iiiiiiiiiiiiiiiit it ittt iiteen e aaneeeannns 57-5
57.3.1 Structuring ApplicationstoUseMessagescccvvvvevvnnnn. 57-5
57.3.2 Example of Message Usagecvuiiiiiiiiniiieieneneneeeineenenns 57-6
_InterfaceItemIndexcoiiiiiiiiiiiiiiiii i i e i e 57-8
XString
L0 o TP 58-1
58.1.1 CharacterStandardccoiiiiiiiineriiininiirerrieennnnns 58-1
58.1.2 Data Structuresciiiivirrrrrrreererrerrnnrenennnnnnnnoenan 58-1
58.1.3 OPerationscvuiieittrnetennunnneeerenrnnnatannisanieeneeens 58-2

ViewPoint Programmer’s Manual

58.2

58.3

58.4

59

59.1
59.2

59.3

59.4

60

60.1
60.2

CInterfaceltems ... i it it . 58-2
B58.2.1 ContextS ..ottt i i e et as 58-2
58.2.2 ReadersandReaderBodiescoiiiiiiiiiiiiiiiiiinnnnnen.. 58-3
58.2.3 Writersand WriterBodies iiiiiiiiiiiiiirrriirnneanenas 58-4
58.2.4 Simple Reader Operationsccitiiiiiiiiiiiinnrinrennnnnenns 58-5
58.2.5 AccessingCharactersciiiiinn., i 58-5
B8.2.6 BrrOrS ... ittt ittt ittt et it et et 58-6
58.2.7 ConversiontoReadersciiiiiiiiiiiiinininienenenennnns 58-6
58.2.8 Reader Allocationcoiiiiiiiiiiiriiiiinnrererenarennas 58-7
58.2.9 Simple WriterOperationscciuiiriiiiiinenrnnnnnnaernns 58-8
58.2.10 Conversionto Writersccitiniiiriiiiiininernniniennnnnn. 58-8
58.2.11 Writer Allocationc ittt i, 58-8
58.2.12 Comparisonof Readersc.ttttiiininnnainnanneanannss. 58-9
58.2.13 Numeric Conversionof Readersccciiiiiiiiiiiinnnneenn. 58-10
58.2.14 Character Scanningcttritrnrrrnrennnnnnnnnnnnnnns 58-11
58.2.15 Other Reader Operationscciiiiiiiiiiiiinerennneennnens 58-11
58.2.16 Appendingto Writersc.ivivveriiinenieennnennennnnnnn. 58-12
58.2.17 Editing Writerscoiiiiumniiirtrieneeeaiineeereeannnnanan 58-13
58.2.18 ConversionfromReadersc.coiiiiiiiiiiiiiiiinnnnneann. 58-14
58.2.19 Reverse CharacterOperationsiiiiiiiinneennnn.. 58-14
Usage/Examples ceensnensessurasacsacacans [58-15
58.3.1 Designing InterfaceswithReadersc.ciiiiiiiinian, 58-15
58.3.2 UsingReaderscooiiiiiiiiiiiiiiiiiiii it 58-16
58.3.3 Simple ParserExamplec..oiiiiiiiiiiiiiiiiiiiiiiii 58-17
Indexof Interfaceltemscoiiiiiiiiiiiieenia ... e 58-19
XTime
OBV W ... ittt iiiit ittt itieseeneennssoansenaosoassonassoassonnsonansens 59-1
Interface Itemsoiiiiiiiiiiir ittt eiiieeeeerenrer e 59-1
59.2.1 AcquiringTimeccciririniiiniitiir et e 59-1
59.2.2 Editing Timeoiiiiiiiiiiritriinnrienienonnnnenananansan 59-2
59.2.3 Useful Constantsand Variablescciiiiiiiiiiiiinnnnnnnn, 59-3
Usage/Examplesuiiiiieinniereeereneenaeeconseraesesneennsrsnsssnnnns 59-3
59.3.1 ParseReader Template Definitionsiiiiiiiiienennn.. 59-3
59.3.2 Exampleciiiiiiiiiiiii i ittt i n e e i e e 59-4
IndexofInterface Itemsc.cciiiiiiiiinini i ireriaieienanns 59-6
XToken
L0 - o - 60-1
Interface Jtems i i i i i i i i et 60-1
60.2.1 Character Source Definitionsciiiiiiiiiiiiiinnernrnnnnns 60-1

T-19

Table of Contents

IL.

T-20

60.3

60.4

60.2.2 Filter Definitionsccciiiiiiiiiiiiiitntrtenneccannnsnans 60-2
60.2.3 SkipMode Definitionsc. ittt ittt 60-2
60.2.4 Quoted Token Definitionsccuiiiiiiiiriinitiniiiinninnnnnns 60-3
60.2.5 Built-inHandlesiiiiiiiiiiiiiiii ittt 60-3
60.2.6 Booleanand NumericTokensccoiiiiirinriennrrenncenecans 60-3
60.2.7 Basic TokenRoutines e 60-4
60.2.8 Signalsand Errorsciiiiiiiiiiit i e e 60-5
60.2.9 Built-inFiltersoii ittt iieiiiienenrenannaannns 60-6
60.2.10 Built-inQuoteProcedures it i i i i 60-7
Usage/Examplescoiiiiiiiiiiiiiiiiiiitnr e iiiaaaetsernnaneeeannnn 60-7
60.3.1 Collecting ToKenSciuiiiiiitirnnneneeeeernnneneeenanneeennns 60-7
IndexofInterfaceltems ittt ieiiinanennna, 60-9

APPLICATION INTERFACES

61

61.1
61.2
61.3
61.4

62

62.1
62.2
62.3

63

63.1

63.2

ChartDatalnstallDefs
L0 -3 o T PP 61-1
Interface Items it it i i ittt i ittt it e 61-1
L0 -7 - U 61-4
Indexof InterfaceItems oiiuiiiiiiiiiiiiirriiiinnnerrnnnnannnns 61-5
DocFramePropsDef
L0 0 T 62-1
Interface Itemscoiiiiiiiiiiiiiiiiiiiiieiiiieteerentnnnnanenaans 62-1
Indexof Interface Items ittt iiiriienrannaenn, 62-3
DoclInterchangeDefs
L0 -3 o T 63-1
63.1.1 CreatingDocuments0iiiiiiiiirineiiirrenrrnnnnnnn 63-1
63.1.2 Enumeratingdocuments iiiiiiiiiiiii e 63-2
Interface Itemsoiiiiiiiiiiiiiiii ittt ieei et tnannaaaaennns 63-2
63.2.1 Datatypesc.iinnniiiiii it rei et e e e 63-2
63.2.2 Creatingdocumentscoiiiiiiiiiinnerernneeeeenneenseenaans 63-3
63.2.2.1 Initializingadocument i iiiiiiiiaa.. 63-3
63.2.2.2 Addingtoadocumentttt 63-4
63.2.2.3 Releasing storagec..iririrnrrrrenernnnnnnnnnnnns 63-7
63.2.2.4 Finalizingdocumentcoiiiiiiiiniriniinennnnn. 63-8
63.2.2.56 Utilitiescoiiiiiiiiiiiiiii i i i e 63-9
63.2.3 Enumeratingdocumentsc.iiiiiiiiiiiieiiiiiieeaa. 63-10
63.2.3.1 OpOm et e e 63-10

ViewPoint Programmer’s Manual

63.3
63.4

64.1
64.2
64.3

65

66.1
66.2
66.3

66

66.1
66.2

66.3

67

67.1
67.2
67.3
67.4

68

68.1

68.2

63.2.3.2 Enumerateccovtititiiiiiiiiiiiriiiiietiiraaaea 63-10

B83.2.3.3 CloSeoiiiiiiii i it it e ittt et 63-13
63.24 Errorsccviiviiiiinnnans R 63-13
Usage/Examplesciiiiiiiiiiieeeeeiteneeeeernsannsessesesocnnnns 63-13
IndexofInterface Itemsccviiriiriniiniit it iierenrenensonenenannns 63-17
DocPagePropsDefs
VO VIBW & ot i v iieiiiretetsensneaesesosesoesosasaseosssnensnssesnsnsaennns 64-1
Interface IHemSooiiii ittt it ittt it renseasenneseensssnanennennsan 64-1
Indexof Interface Itemsccivviiiiiiii ittt tteeiernernennranrnnennss 64-3
FieldPropsDefs
OV VI W .ottt ittt ettt eenasoesesuonsassesnesosoeenenenesnsesesnsnenennss 65-1
Interfaceltems e et eeete et et et 65-1
Indexof Interface Itemsoviiiiiii ittt it et eieierinenennannennns 65-3
FontPropsDefs
Overview.......................,..; .. 66-1
Interface Itemscoitt ittt ittt i ittt it e 66-1
66.2.1 FontDescription il 66-1
66.2.2 Theother fieldsin ProposRecordc.oiiiirininrininnenennnns 66-2
Indexof Interface Itemsccoviiiriitin ittt iieeierenennnesnnennennes 66-4
FontRunDefs
VBTV W .ottt it ittt ittt tees et eenenenenensnsossosnnennsenoneneenaenennns 67-1
55T - o= =Y » o V- S PN 67-1
Meaning of Index and Context FieldsinRunc. ot 67-2
Indexof Interface Itemscccivriirinriiiiir it iietnennennennonenosnnennas 67-3

GraphicsInterchangeDefs

L0 T 68-1
68.1.1 Creating Graphicscoiiiiiiiireioinereerenneereeaaaennennns 68-1
68.1.2 Reading Graphicscciiiiiiiriiiininenrreenneeaeenaaseeennnn 68-2
Interface Itemsooutiii ittt et tnnennertrnanesetcansnaenn 68-2
68.2.1 Creating graphicscciiiiiiiiiiiiiiiieiiinenresrseeernsennanns 68-2
B8.2.1.1 Starroutinesc.uieceeieecannccttatitaeattaeeaaanns 68-2
68.2.1.2 Adding information to a graphicscontainer 68-5
68.2.1.3 Releaseroutinescccitiiiiiiiiinnniinniiann. 68-14
68.2.1.4 Finishroutinescoovveieeneninreninreneneananns 68-14
68.2.2 Reading graphicsccoiiiiiuniiiineeeiiiiia i iiaaanananne 68-14

T-21

Table of Contents

T-22

68.3

69

69.1
69.2
69.3

70

70.1
70.2

70.3

71

ni

7.2

7.3
71.4

71

72.1
72.2
72.3

L1 T T)) 68-18
Indexof Interface [tems iiiriiiiiiii i iiiiirivereeenannencennenes 68-19
InstanceDefs
OV OV W .« ittt it ittt ettt it teteeeeeseasenaseosenoneeseenesnssnnenens 69-1
Interface Itemscoiviii it it it it it ittt e, 69-1
Indexof Interface Items . ..ccoiviiiiin ittt ittt iinererenenaenenaenns 69-3
ParaPropsDefs
L0 -3 o -3 R 70-1
Interface Iemsiiiii ittt ittt ittt st nre et nnernaeenns 70-1
T70.2.1 BasicPropsRecordttt it i i, 70-1
70.2.2 Tabs ettt eteseetoeantsenssenssonsnasoneennenonannennnas 70-3
Indexof Interface Itemscoiriitiiti ittt ittt ettt et eneenannens 70-4
TableInterchangeDefs
Overview.............T ... 71-1
T71.1.1 Tablebuilding oo i ittt iieranananns 71-1
T1.1.2 Tablereadingcccuutiiiiiiinneelietinernnnnnnannaneeaneennn 71-2
Interface Iemeottt ittt ittt it et e i e, 71-2
71.2.1 Tablebuildingoperationsoovviuininneninen. e 71-2
71.2.1.1 Creatinganewtablecciiiiiiiiiiiiiiinnns. T1-2
71.2.1.2 Opening anexistingtable iiiiiiirnnn.. 71-8
T1.2.1.3 Appendingrowsciiiivrritirnnnenrinrenenennnns 71-9
71.2.1.4 Finishingatable iiiiiiiiiieennn... 719
71.2.1.5 Miscellaneousutilitiescciiiriiiiiniiinivnnnn. 71-9
71.2.2 Tablereadingoperationsciiiiiiienninnnnnnnnnn, 71-10
71.2.3 Diagramoftable Structurecovueunernennenneneeneenns 71-11
0)y o s - H 71-12
Usage/Bxamplesuuutiiiiiiteiieaiiiaiieeiieeaessasnernenneenns 71-12
Indexof Interface Itemscoiiiniii ittt iieeronrnnennnnns T1-14
TableSelectionDefs
L0 3 - oTT A 72-1
Interface Items ittt it ettt ettt 72-1
Indexof Interface [temsottt it it i neetenseneennanns 72-2

ViewPoint Programmer’s Manual

Appendices

A System TIP Tables

Al L0) s L= A-1

A2 b 1 3 - T A-1
A21 Normal Tablesciuuiiiiiiiiiiiiitiiiieentiineeerreeneerennnnns A-1
A22 Mouse Mode Tablesccooviiiiiiiiiieeeeeiiinereeneeeeeennaanenns A-11

A3 Usage/Examplesciiiiiiietiiinirieinteneeireneeerinnaneonnneeeans A-14
A 3.1 Using NormalSoftKeys.TIP when installing client softKeys A-14
A 3.2 Attaching a NotifyProc to One of the NormalTables A-15

A4 Index of TIP Tablescciiiitiiieiiit ittt ittt itieetaeeiaeernaeenneenns A-16

B References

C Listing of Atoms

Cl1 Overviewciiiiiiiiiiennnnnn, e et s e et e e ettt C-1

C.2 Atoms as TIP Results in the System TIPTablesccciveiunn... C-1

C3 Passed as the “Atom” Parameter to a Containee.GenericProc C-5

C.4 Event A OmSttt i e it ittt e, C-5

C.5 AtomicProfile AtOmSciitiiiiiii it e it i e it C-5

C.6 0111 T C-5

D Listing of Public Symbols

T-23

Table of Contents

T-24

(MRATHN

=

SYSTEM LEVEL INTERFACES

SYSTEM LEVEL INTERFACES

Introduction

This ViewPoint Programmer’s Manual is written for programmers who are developing
applications to run on ViewPoint software. ViewPoint’s open architecture philosophy
allows applications to be developed easily.

You will find this manual useful only if you are already a Mesa programmer. You should
have completed the Mesa Course and be familiar with the contents of the XDE User’s
" Guide (610E00140) and the Mesa Language Manual (610E00170). You should also be
familiar with the facilities described in the Pilot Programmer’s Manual (610E00160) and
the Filing Programmer’s Manual contained in the Services Programmer’s Guide
(610E00180).

The ViewPoint Programmer’s Manual gives you the information you will need to
implement the user interface of an application that runs on ViewPoint. This includes how
to:

® Represent applications as icons.

® Interact with the mouse and keyboard to process the user’s instructions.

® C(Create folder-like containers.

® Create property sheets.

¢ Create menus.

® Paint pictures and text on the display.

® Create programmable keyboards.

® Represent and manipulate multinational text.

It does not provide you with Mesa, Pilot, or Services-specific information.

1-1

Introduction

1.1

Document Structure

This introductory chapter describes the physical manual itself, how it is organized, who
should read it, how it should be read, and why. Chapter 2, Overview, describes ViewPoint
and discuss its history and overall design.

Chapter 3, The Programmer’s Guide, tells how to use the ViewPoint interfaces. It
describes concepts essential to understanding ViewPoint and describes the facilities that
are available. The most common interfaces are briefly discussed and grouped by
application. All of the ViewPoint interfaces, with a short summary, are listed
alphabetically at the end of the chapter.

The individual interface chapters are arranged alphabetically in Chapters 4 through 59.
These chapters give detailed descriptions of the interfaces that ViewPoint provides. Each
interface chapter begins with an overview that explains the concepts behind the interface
and the important data types that it manipulates. The second section of each chapter
describes the actual items of the Mesa interface and groups them by function. The third
section explains typical ways of using the interface and often contains programming
examples. The fourth section is the index of interface items. Within an interface chapter,
the items of the broadest interest are presented first; more specialized items follow later.

Appendix A presents the system TIP Tables, references are in Appendix B, Appendix C
contains a list of well-known atoms, and Appendix D contains a listing of public symbols.

1.2 Getting Started

1-2

Chapters 1, 2, and 3 of the ViewPoint Programmer’s Manual should be read in order.
Within Chapter 3, you will sometimes be guided to various sections in task-relative rather
than page-relative order. Chapters 4 through 59 (the interface chapters) can be read in
any order, depending on your need.

Overview

2.1

What Is ViewPoint?

- ViewPoint is a collection of facilities for writing application programs that run on a
personal workstation with a high-resolution bitmap display. It supports an open-ended
collection of applications, providing a framework and a set of rules that allow these
independent applications to be integrated. It has an advanced user interface that also
allows applications to be easily adapted for users in other countries.

Throughout this document, the term user describes a person who interacts with the
applications built on ViewPoint via the mouse and keybourd. Programs cannot predict or
control user actions. The term client describes programs that use the facilities described in
this document. The client may act as a result of some user action, but the behavior of the
client is the result of a program and under control of its implementor.

2.1.1 User Abstractions

ViewPoint uses several abstractions that are part of the advanced user interface pioneered
by the Star Workstation:

® Jcons and Desktop. lcons that represent objects on a desktop are one basic abstraction.
These objects can represent either functions or data. Data icons, such as a document,
represent objects on which actions can be performed. Function icons, such as a printer,
represent objects that perform actions. In the metaphor, they are on the desktop that
also serves as the background for their display. With ViewPoint, clients may create
new icons that provide additional functions within the desktop metaphor.

® Windows. Windows are rectangular areas on the screen that display the contents of an
icon when it is opened. Each window has a header containing the name of the
window’s icon and a set of commands. The window also contains scroll bars that seroll
the contents of the window vertically and horizontally.

® Property Sheets. Property sheets are displayed forms that show the properties of an
object. They contain several types of parameters, including state parameters, which

2-1

Overview

may be on or off; choice parameters, which have a set of mutually exclusive values;
and text parameters.

" @ Selection. The selection is an object or body of data identified by the user. It is the
target of user actions; there can be only one selection at any one time. It can be a string
of text that the user may then delete, copy, or change the properties of. It can be an
icon on the desktop that is moved to a printer icon for printing or opened to display its
contents. In general, it can be almost any piece of data that can be represented on the
screen.

2.1.2 Client Abstractions

To implement the above user abstractions and to provide some building blocks for
developing applications, ViewPoint uses several client abstractions:

® Containee and StarDesktop. Containee is an application registration facility that
associates an application with a file type. Registering an application consists of
providing procedures that paint iconic pictures and perform various operations.
StarDesktop, using the desktop metaphor, displays the desktop window and iconic
pictures for each file found in a particular directory.

® (lient Windows. The client window abstraction is more primitive than the user
window abstraction. The client window abstraction serves to isolate applicutions from
the physical display and each other. A window can be thought of as a quarter of an
infinite plane. Within that space, the client is called upon to display the contents of the
window without regard to any other applications’ windows. Windows may be linked to
form a tree structure. A user’s window is typically composed of a number of small
client windows-one for the header, one for each scroll bar, and so forth.

® Menus. Menus are sequences of named commands, each consisting of a text name and
a procedure. Menus may be displayed to the user in several forms, such as in a pop-up
menu or as window shell header commands (see below).

® Window Shells. The user window abstraction is implemented by window shells. They
provide the header, scroll bars, and body windows. The body windows are windows the
client uses to display the content of an application. The commands in the header are
menus.

® Form Windows. Form windows are the client abstraction that provides the basis for
the user property sheet. Form windows allow form items in a window to be created and
manipulated. There arc several types of items: boolean items, choice items, text items,
numeric text items, command items, form and window items. Window items allow the
client to implement its own type of item. The property sheet user abstraction is
implemented by putting a form window inside a window shell.

ViewPoint Programmer’s Manual 2

® Container Windows. Container windows implement a window that contains a list of
items. Clients supply the source of items and the container window handles that
display the contents in a window and interact with the user.

® Selection. The client selection abstraction is a framework in which a client can
manifest itself as the holder of the user’s current selection while other clients
interrogate the selection and request that it be converted to a variety of data types.
ViewPoint defines several selection conversion types. but the selection framework
allows clients to define additional conversion types The selection is the principal
means by which information is transferred between different applications.

2.1.3 System Structure

ViewPoint’s architecture contains a small set of public interfaces that provide the basic
facilities for building workstation applications. Facilities are included in ViewPoint for
several reasons. Some facilities implement system-wide features, such as the window
package. If several applications tried to implement their own window packages, chaos
would result. Facilities are also included in ViewPoint to provide a consistent user
interface, such as form windows and property sheets. A final reason for including facilities
is to provide packages that are useful to many clients, such as the simple text facilities. As
ViewPoint evolves, more facilities useful to a variety of clients will be added.

The ViewPoint interfaces fall into the following general categories:

Application registration:
Windows and display:
Forms and property sheets:

User input and keyboards:
Strings and messages:

Selection:

Containers:

Text display and editing:
Background management:

Miscellaneous user interface:

Miscellaneous:

2.2 History

ViewPoint is the result of

Containee
Context, Display, StarWindowSheil, Window
FormWindow, FormWindowMessageParse, PropertySheet

BlackKeys, KeyboardKey, KeyboardWindow, LevellVKeys,
SoftKeys, TIP, TIPStar

XChar, XCharSets, XCharSetNNN, XComSoftMessage,
XFormat, XLReal, XMessage, XString, XTime, XToken

Selection

ContainerCache, ContainerSource, ContainerWindow,
FileContainerShell, FileContainerSource

SimpleTextDisplay, SimpleTextEdit, SimpleTextFont
BackgroundProcess

Attention, Cursor, MenuData, MessageWindow,
PopupMenu, StarDesktop, Undo

Atom, AtomicProfile, Event, idieControl

past experience with Star and the Xerox Development

Environment. In late 1982, the Star Performance and Architecture Project concluded that
Star’s monolithic system structure, in which every piece knew about every other piece,

2-3

Overview

hindered its performance. The monolithic structure also made it difficult to develop new
applications. In addition, there were hundreds of interfaces in the system but no
distinction between public and private interfaces, which made it difficult for programmers
to learn how to write applications in the system.

In contrast to Star, the Xerox Development Environment had a modular system structure
with a small number of well-documented public interfaces It also encouraged an
open-ended collection of applications. While it performed well and was open, the Xerox
Development Environment did not have as consistent a user interface as Star, nor did it
support Star’s multilingual requirements.

As a result of this study, ViewPoint was created. [t has the system structure, documented
public interfaces, and openness of the Xerox Development Environment, yet supports
Star’s user interface and multilingual requirements.

While it was initially focused on providing a new foundation for Star, ViewPoint has
become the basis for more software products from the Office Systems Division. It will
evolve to replace the current foundation of the Xerox Development Environment and will
likely support products from organizations outside the Office Systems Division.

2.3 Philosophy and Conventions

2-4

ViewPoint’s philosophy and conventions apply both to applications that interact with the
user and to packages that implement a facility. Some are just good system-building
concepts. ViewPoint assumes that programs that run within it are friendly and that theyv
are not trying to circumvent or sabotage the system. The system does not try to enforce
many of these conventions but assumes that clients will adhere to them voluntarily. If
these conventions are not followed, the system may degrade or break down altogether.

2.3.1 Supported Public Interfaces

Systems should be designed to export public interfaces that are well documented and
relatively stable. By defining a set of primitive facilities and stressing their stability,
applications are encouraged to depend on the existing ViewPoint facilities rather than on
other applications packages. This promotes an open architecture in which applications can
be developed and loaded with relative ease, exchanging information among themselves
while maintaining the independence of client modules. The open architecture allows
designing for unknown applications as well as the class of applications expected in Star.

In keeping with an open architecture, ViewPoint does not make far-reaching assumptions
about the applications that run above it. While ViewPoint provides facilities that make
certain styles of applications easy, it does not preclude other styles of applications.

2.3.2 Plug-ins

ViewPoint is self-contained in that it does not import procedures that it expects a client to
supply. Rather it waits, in effect, for clients to call it and state that they want to
implement some facility. This is referred to as a plug—in approach: an application plugs
itself in to a lower layer of software.

ViewPoint Programmer’s Manual 2

Plug-ins encourage modularity at the client level. Because ViewPoint can be run by itself
(although it does not do much), it can also be run with just one application plugged in.
Thus each application can be implemented and debugged individually, which simplifies
system development.

Plug-ins also can break a dependency that would create a complex dependency graph. For
example, the desktop has a dependency on the applications that appear in the desktop. If
the desktop depended directly on the applications, it would have to change every time a
new application was created. By having the applications plug themselves into the desktop,
the direct dependency is broken.

2.3.3 Don’t Preempt the User

Clients should avoid dictating what the user must do. The user should be free to interact
with different applications as desired. For example, the current selection is something
that the user should control. It should be changed only as a result of user actions. A
background process should not change the selection out from under the user.

2.3.4 Don’t Call Us, We’ll Call You

Because the user is in control, a program must wait for the user to interact with it. The
method of interacting with the user that is prevalent in terminal-oriented user interfaces
is to get a command from the user and execute it, which results in the client regaining
control while it awaits user input. With potentially multiple applications active
simultaneously, the user should be free to interact with the one of his choosing.
ViewPoint’s input facilities notify a window when the user inputs to that window.

Events are another case in which the system calls the client. For example, a client may
need to do something when the user logs in. If the client registers a procedure with the
appropriate event, the procedure is invoked when the event occurs.

2-5

Overview

2-6

Programmer’s Guide

This ViewPoint application programmer’s guide is intended to point the programmer to
the most important parts of the most important interfaces needed for writing an
application in ViewPoint.

ViewPoint is a collection of interfaces to be used for writing application programs. It is
primarily intended to support applications like those in the ViewPoint workstatior; that
is, there is support for icons, windows, property sheets, and so forth.

The first section (3.1 Guide) contains a jump table of the form, “If your application does X,
then you use interfaces A and B; also, you need to understand C and D, and you probably
want to read section 3.1.x.” The subsections (3.1.x) provide more detail about A, B, C, and
D, pointing the programmer to the most important types and procedures in an interface.
The second section (3.2 Getting Started) contains essential information for first-time
ViewPoint programmers. Section 3.3 provides some flow of control descriptions for several
common scenarios. It describes which interfaces call which client procedures when, and so
forth. Section 3.4 discuss some programming conventions specific to ViewPoint interfaces.
Section 3.5 contains a summary of all the ViewPoint interfaces.

First, we briefly define an application from the user’s point of view: The user sees the icons
on the desktop and can operate on them in various ways. You can'select an icon with the
mouse and open it to display its contents. Or by selecting the icon and pressing PROPS, you
can examine and change the icon’s properties through a window called a property sheet.
After an icon is opened, he can examine the properties of the contents and change them by
again using the property sheet. By selecting one icon, pressing COPY or MOVE, and then
selecting another icon, he can perform various application-specific operations. This is
often referred to as “dropping one icon onto another.” Each application attaches a different
meaning to the drop-on operation. For example, the folder takes the icon dropped onto it
and adds it to the folder. The printing application (printer icon) prints the icon dropped
onto it. '

From the application’s point of view, an icon is just a picture that represents a file. Files
have a file type, and an application operates on all files of the same type. Thus when the
user selects a folder icon, he or she is actually selecting a file with file type of folder. When
the user performs some operation on an icon, the desktop calls the appropriate application
based on the file type of the file the selected icon represents.

3 Programmer’s Guide

3.1 GQGuide

The following table can help you readily find a desired section.

3.1.1 Guide to the Guide
If your application ...

... Appears as an icon:

See section

- Read about icon applications in 3.2 Getting Started 3.2.2

- Use Containee to register the icon’s behavior 3.1.2
... Opens a window:

- Use StarWindowsShell to create a window 3.1.3

- Use MenuData to construct menus 3.14
... Manages the contents of a window:

- Use Display and Window to display information 3.1.5

- Supply a Tip.NotifyProc to process user actions 3.1.5

- Use Selection to share data between applications 3.1.5

- Use Context to save data with the window 3.1.5
... Puts up a Property Sheet:

- Use PropertySheet and FormWindow interfaces 3.1.6
... Manipulates strings:

- Use the XString interfaces (including XFormat, XToken, XChar) 3.1.7
... Displays messages to the user:

- Use the XMessage and Attention interfaces 3.1.8
... Displays a list of items like a folder:

- Use the Container interfaces (ContainerWindow, ContainerSource) 3.1.9
... Redefines the function keys:

- Use the SoftKeys interface 3.1.10
... Redefines the Black Keys:

- Use BlackKeys and KeyBoardKey interfaces 3.1.11
... Performs operations in a background process:

- Use the BackgroundProcess interface 3.1.12

3-2

ViewPoint Programmer’'s Manual 3

3.1.2 Containee

Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type. (§3.2.2 explains how an application registers itself and is then
invoked to perform various operations). The most important items in Containee are:

Implementation A record containing several client procedures.
Setimplementation Registers an application.
GenericProc : Client procedure called to perform OPEN, PROPS, COPY/MOVE-

onto, and so forth.
PictureProc Client procedure called to display an icon picture.

'Data, DataHandle Uniquely identifies a file.
3.1.3 Application Windows

StarWindowsShell allows a client to create a Star-like window. A StarWindowShell
window has a header that contains a title, commands, and pop-up menus. The window
may have scroll bars, both horizontal and vertical. It also has interior window space that
may contain anything the client desires. StarWindowsShell also supports the notion of
opening within. '

A StarWindowsShell is a window (see Window interface) that is a child of the desktop
window. A StarWindowShell has an interior window that is a child of the
StarWindowsShell and is exactly the size of the available window space in the shell, that is,
the window shell minus its borders and header and scrollbars. The interior window may
have child windows created by the client. These children of the interior window are called
body windows. The client may create an arbitrary number of body windows and may
arrange them arbitrarily. Note: Because the body windows are children of the interior
window, they are clipped by the interior window.

The client may manage body windows directly, including all display and notification (user
input). Body windows can also be managed by various interfaces provided by ViewPoint,
such as FormWindow and ContainerWindow. These interfaces have Create procedures
that take a body window and turn it into a particular kind of window, providing all the
display and notification handling for the window.

The most important items in StarWindowShell are:

Create Creates a StarWindowShell window.
CreateBody Creates a body window.
ShellFromcChild Returns the window shell, given a body window.

SetRegularCommands Places commands in the header of a StarWindowsShell.

3-3

Programmer’s Guide

AddPopupMenu Adds a pop-up menu to the header of a StarWindowShell.

3.1.4 Menus

A menu is a list of named commands. When the user selects a menu command, a client
procedure is called. The MenuData interface allows menu items and menus to be created.
MenuData does not address the user interface for menus. Menu items may appear as
commands in the header of a star window shell (StarwindowShell.SetRegularCommands).
Entire menus may be accessed via a pop-up svmbol in the header of a window shell
(starwindowsShell. AddPopupMenu) Menu items may be added to the pop-up menu that is
available to the user through the attention window (Attention.AddMenultem).

The most important items in MenuData are:

Createltem Creates a menu item.

MenuProc A client procedure that is called when the user selects a
menu item.

CreateMenu Creates a menu from an array of menu items.

3.1.5 Managing a Body Window

Clients can manage their own body windows. This involves handling both display and
notification (user input), and often includes managing the current selection. Display is
done by providing a window display procedure. Notifications are received through a client-
provided Tip.NotifyProc. The Selection interface manages the current selection. Arbitrary
data associated with a window can be saved with the window by using the Context
interface. '

3.1.5.1 Display

The Window interface calls the client’s display procedure to repaint the contents of the
window. It is called when the window is initially made visible. It is also called when the
window suddenly becomes more visible because an overlapping window was moved, or
when the window is scrolled so that the part of it that was invisible before becomes visible.
The display procedure should use the Display and/or SimpleTextDisplay interfaces to
display bits in the window. The display procedure can be set when a window shell’s body
window is created (StarwindowsShell.CreateBody) or by calling window.SetDisplayProc.

The most important item in Window is the client’s display procedure. There is no TYPE for
this procedure, but it is discussed in the Window interface chapter. Other important
items:

Box Defines a rectangle in a window.

Place Defines a point in a window.

ViewPoint Programmer’s Manual 3

The most important items in Display are:

Black Displays a black box.

White Displays a white box.

Invert Inverts the bits in a box.

Bitmap Displays an arbitrary array of bits.

The most important item in SimpleTextDisplay is:

StringlntoWindow Displays a string in a window.

3.1.5.2 TIP and TIPStar

TIP provides basic user input facilities through a flexible mechanism that translates
hardware-level actions from the keyboard and mouse into higher-ievel client action
requests (result lists). The acronym TIP stands for terminal interface package. This
interface also provides the client with routines that manage the input focus, the periodic
notifier, and the sTop key.

The basic notification mechanism directs user input to one of many windows in the
window tree. Each window has a Tip.Table and a Tip.NotifyProc. The table is a structure
that translates a sequence of user actions into a sequence of results that are then passed to
the notify procedure of the window.

The Notifier process dequeues user events, determines which window the event is for, and
tries to match the events in the window’s Table. If it finds a match in the table, it calls the
window’s NotifyProc with the results specified in the table. If no match is found, it tries
the next table in the window’s chain of tables. If no match is found in any table, the event
is discarded.

TIP tables provide a flexible method for translating user actions into higher-level client-
defined actions. They are essentially large select statements with user actions on the left
side and a corresponding set of results on the right side. Results may include mouse
coordinates, atoms, and strings for keyboard character input.

ViewPoint provides a list of normal tables that contain one production for each single user
action. Client programmers can write their own table to handle special user actions and
link it to system-defined tables, letting those tables handle the normal user actions. These
system-defined tables are accessible through the TIPStar interface and are described in
Appendix A.

Input Focus. The input focus is a distinguished window that is the destination of most user
actions. User actions may be directed either to the window with the cursor or to the input
focus. Actions such as mouse buttons are typically sent to the window with the cursor.
Most other actions, such as keystrokes, are sent to the current input focus. Clients may
make a window be the current input focus and be notified when some other window
becomes the current input focus.

3-5

Programmer’s Guide

The current selection and the current input focus often go together. If the window in which
a selection is made also expects to receive user keystrokes (function keys as well as black
keys), TIP.SetinputFocus should be called at the same time as Selection.Set is called. This is
also the time to call SoftKeys.Push or KeyboardKey.RegisterClientKeyboards, if necessary.

Modes. TIPStar also provides the notion of a global mode to support MOVE, COPY, and SAME.
When the user presses down and releases the MOVE, COPY, or SAME keys, the client that
currently has the input focus will receive the notification and should call TIPstar.SetMode
This changes the mouse TIP table so that atoms specific to the mode are produced rather
than normal atoms when the user performs mouse actions. For example, in copy mode
“CopyModeDown” instead of "PointDown” is produced when the user presses the left
mouse button. This informs the client that receives the atom that it should attempt to copy
the current selection rather than simply select something.

The most important items in TIP are:
NotifyProc Client procedure that is called to handle a user action.
Results, ResultObject Right side of the table entry that matched the user action.

SetinputFocus Sets a window to be the current input focus.

The most important items in TIPStar are:
NormalTable : Returns the chain of system-provided TIP tables.

SetMode Sets the entire environment into MOVE, COPY, or SAMEAS
mode, thus changing the results produced for mouse clicks.

3.1.5.3 Context

The Context interface allows arbitrary client data to be associated with a window. Client
data is usually allocated and associated with the window when the window is created. The
data may be retrieved any time, such as at the beginning of the client’s display procedure
and Tie.NotifyProc.

The most important items in Context are:
Create Associates data with a window.

Find Recovers the data previously associated with a window.

3.1.5.4 Selection

The Selection interface defines the abstraction that is the user’s current selection. It
provides a procedural interface to the abstraction that allows it to be set, saved, cleared,
and so forth. It also provides procedures that enable someone other than the originator of
the selection to request information relating to the selection and to negotiate for a copy of
the selection in a particular format.

ViewPoint Programmer’s Manual 3

The Selection interface is used by two different classes of clients. Most clients wish merely

“to obtain the value of the current selection in some particular format; such clients are

called requestors. These programs call Convert (or maybe ConvertNumber, which in turn
calls Convert), or Query, or Enumerate. These clients need not be concerned with many of
the details of the Selection interface.

The other class of clients are those that own or set the current selection; these clients are
called managers. A manager calls Selection.Set and provides procedures that may be called
to convert the selection or to perform various actions on it. The manager remains in
control of the current selection until some other program calls Selection.Set. These clients
need to understand most of the details of the Selection interface

A client that is managing its own body window will be both a selection requestor and a
selection manager in different parts of the code. For example, when the user selects
something in another window and copies it to the client’s window, the client must call
Selection.Convert to request the value of the selection in a form appropriate to the
application. On the other hand, when the user clicks a mouse button in the client’s
window, the client usually becomes the selection manager by calling Selection.Set.

The most important items in Selection are:
Convert Request the value of the selection in some target form.

Value A record containing a pointer to the converted selection
value, among other things.

CanYouConvert Returns TRUE if the selection manager can convert the
selection to a particular target type.

Set Called by a selection manager to become the current
manager.
ConvertProc Manager-supplied procedure that will be called to convert

the selection to some target type.

ActOnProc Manager-supplied procedure that will be called to perform
some action on the selection, such as mark, unmark, clear.

3.1.6 Property Sheets and FormWindow

A property sheet shows the user the properties of an object and allows the user to change
these properties. There are several different types of properties, the most common ones
being boolean, choice (enumerated), and text.

3-7

Programmer’s Guide

3-8

From a client’s point of view, a property sheet is simply a StarWindowShell with a
FormWindow as a body window. A property sheet is created by calling propertysheet.Create,
providing a procedure that will make the form items in the FormWindow (a
FormWindow.MakeltemsProc), a list of commands to put in the header of the property sheet,
such as Done, Cancel, and Apply (PropertySheet.Menultems), and a procedure to call when
the user selects one of these commands (a PropertySheet.MenuitemProc). When the user
selects one of the commands in the header of the property sheet, the client’s
PropertySheet. MenultemProc is called. If the user selected Done, for example, the client can
then verify and apply any changes the user made to the object’s properties

The most important items in PropertySheet are:
Create Creates a property sheet.

Menultems Used for specifying which commands to put in the header of
the property sheet.

MenultemProc Client procedure called when the user selects one of the
commands in the header.

The most important items in FormWindow are:
MakeltemsProc Client procedure called to create the items in the form

MakeXXXlItem Makes a form item. XXX can be Boolean, Choice, Text,
Integer, Decimal, Window, TagOnly, Command.

GetXXXIltemValue Returns the current value of an item. XXX can he Boolean,
Choice, Text, Integer, Decimal, Window, TagOnly,
Command.

3.1.7 XString, et al.

The Xerox Character Code Standard defines a large number of characters, encompassing
not only familiar ASCII characters but also Japanese and Chinese Kanji characters and
others to provide a comprehensive character set able to handle international information
processing requirements. Because of the large number of characters, the data structures
in XString are more complicated than a LONG STRING’s simple array of ASCII characters, but
the operations provided are more comprehensive.

Characters are 16-bit quantities that are composed of two 8-bit quantities, their character
set and character code within a character set. The Character Standard defines how
characters may be encoded, either as runs of 8-bit character codes of the character set or as
16-bit characters where the character set and character code are in consecutive bytes. (See
the XChar chapter for information and operations on characters.)

ViewPoint provides a string package consisting of several interfaces that support the
Xerox Character Code Standard. XString provides the basic data structures for
representing encoded sequences of characters and some operations on these data
structures. XFormat converts other TYPEs into XStrings. XToken parses XStrings into other
TyPes. XChar defines the basic character type and some operations on it. XCharSets

ViewPoint Programmer’s Manual 3

enumerates the character sets defined in the Standard. A collection of interfaces
enumerate the character codes of several common character sets (XCharSetNNN). XTime
provides procedures to acquire and edit times into XStrings and XStrings into times.

3.1.8 XMessage and Attention

XMessage supports translation into other languages of text displayed to the user. It does
not include any string constants in the code of an application. Rather, all the string
constants for an application are declared in a separate module and registered with
XMessage. Then whenever the application needs a string constant, it obtains it by calling
XMaessage.Get. Several commonly used messages such as "Yes”, "No”, and days of the
week are defined in XComSoftMessage.

The most important items in XMessage are:
Get Retrieves a message.

RegisterMessages Registers all the messages for an application.

The Attention interface provides a global mechanism for displaying messages to the user.
Attention provides procedures to post messages to the user in the attention window, clear
the attention window, post a message and wait for confirmation, and so forth.

The most important items in Attention are:

Post Posts a message in the attention window.
Clear . Clears the attention window.
formatHandle XFormat.Handle that may be used to format strings into the

attention window.

3.1.9 Containers

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user. Star
Folders are a typical example of such an application.

Figure 3-1 shows the relationships among the various interfaces and potential clients.
Each interface is described below, followed by a discussion of which interfaces an
application might need to use.

3-9

Programmer’s Guide

3-10

Folder InBasket

\ 7 / i Directory

FileContainerShell

N

ContainerWindow

|

| »| ContainerSource |g
FileContainerSource (Defs only - no impl) :

' N R |

FileContainerSourcelmpl o T T

DirectoryContainerSources

\ . DirectoryContainerSourceimpls

ContainerCache

Figure 3.1 Container interface Dependencies

The ContainerWindow interface takes a window and a ContainerSource and makes the
window behave like a container. It maintains the display and manages scrolling,
selection, and notifications. Note: This interface does not depend on NSFile.

A container source is a record of procedures that implement the behavior of the items in a
container and the behavior of the container itself. ContainerWindow obtains the strings of
each item by calling one of these procedures. ContainerWindow also performs user
operations on items (such as open, props, delete, insert, take the current selection, and
selection conversion) by calling other procedures in the record. A container source can be
thought of as a supply (source) of items for a container window. The ContainerSource
interface defines each of the procedure TYPEs that a container source must implement.
ContainerSource contains TYPEs only.

ContainerCache provides the implementor of a container source with an easy-to-use cache
for storing and retrieving the strings of each item and some client-specific data about each
item.

FileContainerSource provides an NSFile-backed container source. It takes an
NsFile.Reference for a file that has children, and each child file becomes an item of the
container. Facilities are provided to specify the columns based on NSFile attributes.

The FileContainerShell interface takes an NSFile and column information (such as
headings, widths, formatting) and creates a FileContainerSource, a StarWindowsShell, and
a container window body window. Most NSFile-backed container applications can use this
interface, which greatly simplifes the writing of those applications.

————

ViewPoint Programmer’s Manual 3

Each of the items in a container must behave like to a file on the desktop; that is, each
item must be able to be opened, show a property sheet, take a selection, and so forth.
However, the items need not be backed by files. If the container is backed by an NSFile that
has children, then the FileContainerShell interface is the only interface the client needs to
use. Otherwise, the client must implement a container source and make most of the calls
that the FileContainerShell implementation makes; that is, starwindowshell.Create,
starwindowsShell.CreateBody, Containerwindow.Create.

3.1.10 SoftKeys

The SoftKeys interface provides for client-defined function keys designated to be the
isolated row of function keys at the top of the physical keyboard. It also provides a
SoftKeys window whose “keytops” may be selected with the mouse to simulate pressing
the physical key on the keyboard. Such a window is displayed on the user’s desktop
whenever an interpretation other than the default SoftKeys interpretation is in effect.
(The default is assumed to be the functions inscribed on the physical keys.)

The most important items in SoftKeys are:

Labels, LabelRecord Strings to display on the keytops in the SoftKeys window.
Push Install a client-specific interpretation for the soft keys.
Remove Remove a previously installed interpretation.

3.1.11 Client-Defined Keyboards

KeyboardKey is a keyboard (the central set of black keys on the physical keyboard)
registration facility. [t provides clients with a means of registering system-wide
keyboards (available all the time, like English, French, European), a special keyboard
(like Equations), and/or client-specific keyboards (those that are available only when the
client has the input focus). The labels from these registered keyboards are displayed in the
softkeys window when the user holds the KEYBOARD key down.

The BlackKeys interface provides the data structures that define a client keyboard.

The most important items in KeyboardKey are:
AddToSystemKeyboards Adds a keyboard to the system keyboards.

RegisterClientKeyboards Establishes the keyboards available to the user.

The most important items in BlackKeys are:

Keyboard, KeyboardObject A keyboard interpretation.

3-11

3 Programmer’s Guide

3.1.12 BackgroundProcess

The BackgroundProcess interface provides basic user feedback and control facilities to
clients that want to run in a process other than the the Notifier process (see the Notifier
section below). Once registered with BackgroundProcess, the client process can use
Attention to post messages and check to see if the process has been aborted by the user.
The user can look at the messages posted by the process and abort the process. The
primary procedure in BackgroundProcess is ManageMe, which is typically the first
procedure called from a background process.

3.2 Getting Started

This section is a guide for programmers who have never used the ViewPoint interfaces. It
shows how two common types of applications are written using ViewPoint.

A user can invoke a program in the ViewPoint environment in two ways. First is to select
an icon and press a function key such as OPEN, PROPS, COPY, or MOVE. This type of program
is called an icon application. Second, the user may simply select an item in the attention
window’s pop-up menu. For example, in OS 5, a Show Size command reports on the size of
the selected icon’s file. The following sections describe how to write each of these tvpes of

programs.
-
3.2.1 Simplest Application !
The simplest way to get a program running in the ViewPoint environment is to have the
program add an item to the attention window’s pop-up menu. When the user selects that
item, the program is called. See the SampleBWSTool for an example of this type of
application. Excerpts from SampleBWSTool:
Init: PROCEDURE = {
sampleTool: xstring.ReaderBody « x5tring. FromSTRING["Sample Tool"L];
Attention.AddMenultem [
MenuData.Createltem [
zone: sysZ,
name: @sampleTool,
proc: MenuProc]];
J
-- Mainline code
Init(];
When the application is started, its startup (mainline) code creates a MenuData.ltemHandle
by calling MenuData.Createltem and then adds this item to the attention window’s menu by
calling Attention.AddMenultem. Now the MenuProc passed to MenuData.Createltem is
called when the user selects the Sample Tool item in the attention window’s pop-up menu.
The MenuProc can then do whatever is appropriate for the application. -

3-12

ViewPoint Programmer’s Manual 3

3.2.2 Icon Application

Getting an icon application running in ViewPoint is a little more complex. The basic idea
is that an application operates on files of a particular type. When an application is started,
it registers its interest in files of that type. Whenever the user operates on a file of that
type, the application gets called. Here is a skeletal example of some application code; the
full explanation follows:

-- Constants and global data

samplelconFileType: NSFile.Type =.. .;
oldimpl, newimpi: Containee.Implementation «[];

-- Containee.Jmplementation procedures

GenericProc: Containee.GenericProc = {

SELECT atom FROM
“canYouTakeSelection = > ...
takeSelection = > ...
takeSelectionCopy = > ...
open =2> ...
props = > ...
ENDCASE = > . ..

PictureProc: Containee.PictureProc = {
;);s.play.Bitmap [...L ‘
Y

-- Initialization procedures

InitAtoms: PROCEDURE = {
open « Atom.MakeAtom["Open"”L];
props « Atom.MakeAtom["Props"L];
canYouTakeSelection & atom.MakeAtom{"CanYouTakeSelection"L];
takeSelection « Atom.MakeAtom["“TakeSelection"L];
takeSelectionCopy « Atom.MakeAtom["TakeSelectionCopy"L];

L
FindOrCreatePrototypelconFile: PROCEDURE = {...};

Setimplementation: PROCEDURE = {
newlmpl.genericProc « GenericProc;
newlmpl.pictureProc « PictureProc;
oldimpl & containee.Setimplementation [samplelconFileType, newlmpl];

};
-~ Mainline code
InitAtoms(];

FindOrCreatePrototypelconFile[];
Setimplementation(];

3-13

Programmer’s Guide

3-14

The most important thing to note in the above example is the Setimplementation
procedure and the call to Containee.Setimplementation in particular. This call associates
the application’s implementation (newlmpl) with a particular file type
(samplelconFileType). This implementation is actually a Containee.Implementation that is
a record which contains procedures. Whenever the user operates on files of type
samplelconFileType, the procedures in the Implementation record are called. An
understanding of how this works requires an understanding of how the ViewPoint desktop
implementation operates.

First, some background about NSFiles. All NSFiles have:

A name

A file type (LONG CARDINAL)

A set of attributes, such as create date

Either:

® Content, such as a document

® Children that are also NSFiles, such as a folder.

An NSFile that has children is often called a directory. Fine point: anNSFile can actually have both
content and children; however, to simplify this discussion, this point is ignored. Note: Because the
children of an NSFile can themselves have children, NSFile supports a hierarchical file
system.

A ViewPoint desktop is an NSFile that has children. An on-screen icon picture represents
each child file of the desktop’s NSFile The desktop display of rows of “icons” is an illusion.
The word icon is in quotes because, from the programmer’s point of view, there really is no
such thing as an icon. The only things that really exist are files (NSFiles), icon pictures,
and application code.

Immediately after logging on, the desktop implementation enumerates the child files of
the desktop file and calls an application’s Containee.PictureProc for each child file, based on
the child file’s type. Each application’s Containee.PictureProc should then display the icon
picture for that file.

After logon is complete and the desktop is displayed, the desktop implementation receives
user actions such as mouse clicks and presses of the OPEN or PROPS keys. For example,
assume the user selects an icon picture and presses OPEN. The desktop implementation
determines the file type for the file represented by the icon picture the user selected and
then calls the Containee.GenericProc for the application that operates on files of that type,
requesting that the application open the icon. It also passes the application a unique
identifier for the particular file selected. At this point, the application can do whatever is
appropriate for that application. Typically, the application opens the file, reads some data
out of it, creates a StarWindowsShell, and displays the contents of the file in the window in
some application-specific form.

The desktop implementation does not call an application directly. Rather, ViewPoint
maintains a table of file-type/Containee.Implementation pairs. When an application calls
Containee.Setimplementation, an entry is added to the table. When the desktop

ViewPoint Programmer’s Manual 3

implementation calls an application, it obtains the Containee.Implementation for the
-’ application by looking it up in the table (it actually calls Containee.Getimplementation).

3.2.3 Operational Notes

To write an icon application, a programmer must obtain a unique file type. Contact your
ViewPoint consultant to obtain one.

In the example above, the application in its initialization code checks to be sure a
prototype file exists and, if not, creates one. This usually involves creating a file with the
proper file type for this application. This allows the user to get started with the
application, usually by copying the blank prototype out of a special folder of prototypes.

Note: There is a clear distinction between a prototype file for an application and a bed file
that contains the code for the application. All bed files are of the same type, while each
prototype file is different for each application.

3.3 Flow Descriptions

The following flow descriptions are intended to show how everything is related. For each
example scenario, the exact sequence of calls is described, including ViewPoint interfaces
and clients.

3.3.1 Select an Icon

The user points at an icon on the desktop

i 5
°
°
°
®
. .
A

When the mouse button goes.down vver an icon picture, the notification goes to the
desktop implementation’s TiP.NotifyProc The NotifyProc will be passed a window.Place
and a "PointDown” atom. The desktop implementation determines what file is
represented by that icon picture. Fine point: The desktop implementation maintains a mapping
from icon picture locations to- NSFile.References.

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.iImplementation for that file type.

The desktop implementation calls the Containee.PictureProc that is in the
Implementation; (that is, impl.pictureProc), passing in:

® data: the NsFile.Reference for the file

e old: normal

¢ new: highlighted

The application’s PictureProc displays a highlighted version of its icon picture,
perhaps simply calling Disptay.Invert.

When the mouse button goes up (a “PointUp” atom), the desktop implementation
becomes the current selection manager by calling Selection.Set. It sets the desktop
window to be the current input focus by calling Tip.SetinputFocus. Setting the input

3-15

Programmer’s Guide

3-16

focus to be the desktop window ensures that keys such as OPEN, PROPS, COPY,and so
forth, will all go to the desktop’s NotifyProc.

END.

3.3.2 PrOPS of an Icon

Assume an icon on the desktop is selected. The user presses PROPS. After changing some
items in the property sheet, the user selects Done. :

The desktop implementation’s Tip.NotifyProc gets the notification (a “PropsDown”
atom) and determines which icon picture is currently selected and what file is
represented by that icon picture.

The desktop implementation calls Containee.Getimplementation, passing in the file
type of the file and getting back the Containee.Implementation for that file type.

The desktop implementation calls the Containece.GenericProc that is in the
Implementation; (that is, impl.genericProc), passing in:

® data: the NsFile.Reference for the file
¢ atom: “Props”
® changeProc: a Containee.ChangeProc that belongs to the desktop implementation

® changeProcData: a pointer to some desktop implementation data that identifies .
the icon/file being operated on. '

The application’s GenericProc creates a property sheet by calling propertySheet.Create.
It probably also opens and retrieves some data out of the file (using various NSFile
operations) and uses that data to set the initial values of the items in the property
sheet.

Typically, the client wants to save the Nsfile.Handle for the file while the property
sheet is open. [n addition, if the opening and closing of the property sheet might cause
the file’s attributes to change, the application’s GenericProc must save the passed
changeProc and changeProcData. A typical example is when the file’s name is one of
the items in the property sheet and the user can change the name. The data is saved
by allocating a record with this data in it and passing a pointer to the record as the
clientData parameter to PropertySheet.Create. Later, when the user selects Done or
Apply, this data may be recovered (see the rest of this flow description). Note: This
data cannot be saved in a local frame (such as that of the GenericProc) hecause the
GenericProc must return to the notifier after creating the property sheet: when the
user selects Done or Apply that is a new call stack. The client data should not be saved
in a global frame because more than one property sheet may be open for a particular
application.

The application’s GenericProc returns the StarwindowsShell.Handle for the property
sheet.

The desktop implementation displays the property sheet by calling
starWindowShell.Push: then the desktop’s NotifyProc returns to the Notifier.

ViewPoint Programmer’s Manual 3

The user changes some items and then selects Done.

The PropertySheet implementation calls the client’s PropertySheet.MenultemProc that
was passed in to PropertySheet.Create, passing in: '

o shell: the StarWindowsShell for the property sheet

e formWindow: the FormWindow for the property sheet

® menultem: done

e clientData: the pointer to the client’s data that was passed to PropertySheet.Create
The client’s MenultemProc recovers the client’s data (the file handle, the changeProc
and changeProcData, and any other relevant client data) from the clientData
parameter. It determines if the user made any changes and, if so, updates the file

accordingly and calls the changeProc, passing in the changeProcData, the file
reference, and a list of the changed file attributes.

The desktop’s ChangeProc causes the icon picture to be redisplayed, because changing
an attribute such as the name requires the picture to be updated with the new name.

The client’s MenultemProc returns to the PropertySheet implementation, indicating
that the property sheet should be destroyed.

The PropertySheet implementation destroys the property sheet by calling
starwindowShell.POp and returns to the Notifier

END.

3.3.3 oPENan Icon

Opening an icon is similar to opening a property sheet for an icon.

3.3.4 cOPY Something to an [con

Assume something has been selected. The user presses COPY and then points at an icon.

When the user presses COPY, the NotifyProc for the window that currently has the
input focus (and the selection) is called. It calls TIPStar.SetMode [copy] to set the
environment into copy mode and then returns to the Notifier. [t might also call
Cursor.Set to change the cursor shape to indicate move mode.

SetMode replaces the NormaiMouse.TIP table with the CopyModeMouse.TIP table.
The user presses the mouse button down over an icon on the desktop.

The desktop’s NotifyProc gets called with a "CopyModeDown” atom (instead of a
“PointDown” atom because of the TIP table switch). It determines what file is
represented by the icon picture the user is pointing at. It calls
Containee.Getimplementation, passing in the file’s type and getting back a
Containee.iImplementation It calls the Implementation’s GenericProc passing in:

® data: the NsFile.Reference for the file

3-17

Programmer’s Guide

e atom: “"CanYouTake”

¢ The application’s GenericProc calls Selection.CanYouConvert or Selection.HowHard to
determine if the current selection can be converted to target type(s) that the
application can take. For example, if the icon being copied to is a printer icon, it calls
HowHard with targets of interpressMaster and file.

® The Selection implementation calls the current selection manager’s
selection.ConvertProc. [t returns an indication of how hard it would be to convert the
selection to the given target types.

® The application’s GenericProc returns a pointer to TRUE if it determines that it can take
the current selection and FALSE if it cannot.

® The desktop implementation changes the cursor shape to a question mark if the
application’s GenericProc returns FALSE. Otherwise, it leaves the cursor as it was.

@ The user releases the mouse button.

® The desktop’s NotifyProc gets called with a “CopyModeUp” atom. It determines what
file is represented by the icon picture the user is pointing at. It calls
Containee.Getlmplementation, passing in the file’s type and getting back a
Containee.Implementation. It then calls the Implementation’s GenericProc, passing in:

® data: the NSFile.Reference for the file

° atom:' “TakeSelectionCopy”

® changeProc: a Containee.ChangeProc that belongs to the desktop implementation

® changeProcData: a pointer to some desktop implementation data that identifies

the icon/file being copied to

® The application’s GenericProc calls Selection.Convert or (Selection.Enumerate) to convert
the selection to the desired type. The application then operates on the converted
selection value as appropriate for that application. For example, the printer icon
application converts the selection to an interpressMaster and sends the master to the
printer. (See the Selection chapter for a full flow description of the selection
mechanism.)

® The application’s GenericProc returns to the desktop’s NotifyProc, which returns to
the Notifier.

¢ END.

3.4 Programming Conventions

3-18

The ViewPoint environment assumes that the programs that run in it are friendly and
that they are not trying to circumvent or sabotage the system. The system does not enforce
many of the conventions described here but assumes that application programmers will
adhere to them voluntarily. If these conventions are not followed, the ViewPoint
environment may degrade or break down altogether.

ViewPoint Programmer’s Manual 3

The most important principle is that users should have complete control over their
environment. [n particular, clients shall not pre-empt users. A user should never be forced
by a client into a situation where the only thing that can be done is to interact with only
one application. Furthermore, the client should avoid falling into a particular mode when
interacting with the user; that is, an application should avoid imposing unnecessary
restrictions on the sequence of user actions.

This goal of user control has implications for the designs of applications. A client should
never seize control of the processor while getting user input. This tends to happen when
the client wants to use the "get a command from the user and execute it" mode of
operation. Instead, an application should arrange for ViewPoint to notify it when the user
wishes to communicate some event to the application. This is known as the “Don't call us,
we’ll call you” principle.

The user owns the window layout on the screen. Although the client can rearrange the
windows, this is discouraged. Users have particular and differing tastes in the way they
wish to lay out windows on the display; it is not the client's role to override the user's
decisions. In particular, clients should avoid making windows jump up and down to try to
capture the user's attention. If the user has put a window off to the side, then he does not
want to be bothered by it.

3.4.1 Notifier

ViewPoint sends most user input actions to the window that has set itself to be the focus
for user input; the rest.of the actions are directed to the window containing the cursor. (Sce
the TIP interface for details on how the decision is made where to send these actions.) A
process in ViewPoint notes all user input actions and determines which window should
receive each one. A client is concerned only with the actions that are directed to its
window; it need not concern itself with determining which actions are intended for it.

The basic notification mechanism directs user input to one of many windows in the
window tree. Each window has a TIP‘Table and a TIP.NotifyProc. The table is a structure
that translates a sequence of user actions into a sequence of results that are then passed to
the notify procedure of the window.

There are two processes that share the notification responsibilities, the Stimulus process
and the Notifier process. The Stimulus process is a high-priority process that wakes up
approximately 50 times a second. When it runs, it makes the cursor follow the mouse and
watches for keyboard keys going up or down, mouse motion, and mouse buttons going up
or down, enqueuing these events for the Notifier process.

The Notifier process dequeues these events, determines which window the event is for,
and tries to match the events in the window’s table. If it finds a match in the table, it calls
the window’s notify procedure with the results specified in the table. If no match is found,
it tries the next table in the window’s chain of tables. If no match is found in any table, the
event is discarded.

The Notifier process is important. To avoid multi-process interference, some operations in
the system can happen only in the Notifier process. Setting the selection is one such
operation. The Notifier process is also the one most closely tied to the user. The Notifier
waits until a NotifyProc finishes for one user action before processing the next user action.
If an operation takes an extended time to complete (more than three to five seconds), it

3-19

Programmer’s Guide

3-20

should be forked from the Notifier process to run in a separate process so that the Notifier
process is free to respond to the user’s actions. Of course, the application writer must take
great care when stepping into this world of parallel processing

3.4.2 Multiple Processes, Multiple Instances

In ViewPoint, many programs can run simultaneously. The designer of a client-callable
package should bear in mind that several different asynchronous clients may invoke his
package, so the package should be monitored.

The simplest design is to have a single entry procedure that all clients must call. While
one client is using the package, all other clients block on the monitor lock. Of course, no
state should be maintained internally between successive calls to the package, because
there is no guarantee that the same client is calling each time.

This simple approach has the disadvantage that clients are simply stopped for what may
be a long time, with no option of taking alternate action. To ease this restriction, the entry
procedure can check a "busy" bit in the package. If the package is busy, the procedure can
return this result to the client. The client can then decide whether to give up, try
something else, or try again. This is less likely to tie up an application for a long period,
and the user can use the application for other purposes.

If the package is providing a collection of procedures and cannot provide its services in a
single procedure, the package and its clients must pass state back and forth in the form of
an object. The package can use a single monitor on its code to protect the object, or it can
provide a monitor as part of each object. If it does the latter, then several clients can be
executing safely at the same time.

Some packages require that a client provide procedures that are called by the package.
The designer of such a package should have these client-provided procedures take an extra
parameter, a long pointer to client instance data. When the client provides the package
with the procedures, it'also provides the instance data to pass to the procedures when they
are called. The client can then use this instance data to distinguish between several
different instances of itself that are sharing the same code.

3.4.3 Resource Management

Programs in the Xerox Development Environment must explicitly manage resources. For
example, memory is explicitly allocated and deallocated by programs: there is no garbage
collector to reclaim unused memory. All programs share the same pool of resources, and
there is no scheduler watching for programs using more than their share of execution
time, memory, or any other resource.

Programs must manage resources carefully. If a program does not return a resource when
it is done with it, that resource will never become available to any other program and the
performance of the environment will degrade. The most common resource, and one of the
more difficult to manage, is memory.

When interfaces exchange resources, clients must be very careful about who is responsible
for the resource. The program that is responsible for the deallocation of a resource is the
owner of that resource. One example of a resource is a file handle. If a program passes a

o~

ViewPoint Programmer’s Manual 3

file handle to another program, both programs must agree about who owns that file
handle. Did the caller transfer ownership by passing the file handle, or is it retaining
ownership and only letting the called procedure use the file handle? If there is
disagreement between the two programs, either the file will be released twice, or it will
never be released at all. All interfaces involving resources must state explicitly whether
ownership is transferred. To ease the problem of memory management when the
ownership of memory can change, a heap called the system heap is used in ViewPoint. If a
piece of memory can have its ownership transferred, it is either allocated from the system
heap or a deallocation procedure must be provided for it.

The most common resource appearing in interfaces is an XString (Reader or ReaderBody).
There must be agreement about which program is responsible for deallocating the string’s
bytes. Typically, a string passed as an input parameter does not carry ownership with it;
implementors of such procedures should not deallocate or change the string. [f it is
necessary for the implementor to modify the string or use it after the procedure returns,
the implementor should first copy it. Clients should be particularly careful when a
procedure returns a string to note whether ownership has come with it.

3.4.4 Stopping Applications

The ViewPoint environment consists of cooperating processes. There are no facilities for
cleanly terminating an arbitrary collection of processes. It is assumed that application
writers are good citizens and will design their tools to stop voluntarily when asked to stop.

An application should stop if the user aborts the application. There are two ways to
determine if the user has aborted an application. (1) An application’s window can have a
TIP.AttentionProc that is called as soon as the user presses the STOP key. (2) Procedures in
the TIP interface can check whether a user has aborted an application with the STOP key in
the application’s window. An application should check for a user abort at frequent
intervals and be prepared to stop executing and clean up after itself. Because the
application controls when it checks, it can check at points in its execution when its state is
easy to clean up. Packages that can be called from several programs should take a
procedure parameter that can be called to see whether the user has aborted.

3.4.5 Multinationality

ViewPoint is designed to support easy transport of applications to other countries. The
string package (XString, XChar, XFormat, and so forth) supports the Xerox Character Code
Standard, which allows for strings in many languages to be intermixed. The XMessage
interface allows user messages to be translated into other languages because the
application programmer can put all these messages into a module separate from the rest of
the application code. The KeyboardKey interface supports the addition of keyboards for
many languages.

Application programmers are strongly encouraged to allow their application to be
multilingual. This means for example, using XString for all string operations and using
XMessage to manage any text that will be displayed to the user. It also means not making
any language assumptions about characters received from the user. An application that
expects typing input from the user should be prepared to receive characters from any
character set.

3-21

3

Programmer’s Guide

3.5 Summary of Interfaces

3-22

Atom provides the mechanism for making TIP, Event, and Containee atoms.
AtomicProfile provides a mechanism for storing and retrieving global values.
Attention provides a means of displaying messages to the user.

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the the Notifier process.

BlackKeys provides the capability to change the interpretation of the central (black)
section of the keyboard.

Containee is an application registration facility. It allows an application to register its
implementation for files of a particular type.

ContainerCache provides a simple cacheing mechanism for the implementor of a container
source.

ContainerSource defines the procedures that must be implemented to provide a source of
items for a container window.

ContainerWindow creates a window that displays an ordered list of items that behave like
icons on a desktop.

Context provides a mechanism for clients to associate data with windows.

Cursor provides facilities for a client to manipulate the appearance of the cursor that
represents the mouse position on the screen.

Display provides facilities to display bits in windows.

Event provides clients with the ability to be notified of events that take place
asynchronously on a system-wide basis.

FileContainerShell creates a StarWindowShell with a ContainerWindow as a body
window that is backed by a FileContainerSource.

FileContainerSource creates a container source that is backed by a file that has children.

FormWindow creates a window with various types of form items in it, such as text,
boolean, choice (enumerated), command, and window. FormWindow is used to create
property sheets.

FormWindowMaessageParse provides procedures that parse strings to produce various
FormWindow TyPEs.

IdieControl provides access to the basic controlling module of ViewPoint,.

KeyboardKey is a client keyboard (the central black keys) registration facility.

ViewPoint Programmer’s Manual 3

KeyboardWindow provides a particular implementation for a keyboard window.
LevellVKeys defines the names of the physical keys.

MenuData allows menus and menu items to be created.

MessageWindow provides a facility for posting messages in a window to the user .
PopupMenu allows a menu to be displayed (popped up) anywhere on the screen.

PropertySheet creates a property sheet. A property sheet shows the properties of some
object to the user and allows the user to change the properties.

Selection provides the facilities for a client to manipulate the user's current selection. It
also provides procedures that enable someone other than the originator of the selection to

request information relating to the selection and to negotiate for a copy of the selection in
a particular format.

SimpleTextDisplay provides facilities for displaying, measuring, and resolving strings of
Xerox Character Code Standard text. [t can handle only nonattributed single-font text.

SimpleTextEdit provides facilities for presenting short, editable pieces of text to the user.

SimpleTextFont provides access to the default system font that is used to display
ViewPoint's text, such as the text in menus, the attention window, window names,
containers, property sheet text items, and so forth.

SoftKeys provides for client-defined function keys designated to be the isolated row of
function keys at the top of the physical keyboard.

StarDesktop provides access to the user's desktop file and window.
StarWindowShell provides facilities for creating Star-like windows.

TIP provides basic user input facilities through a flexible mechanism that translates
hardware level actions from the keyboard and mouse into higher-level client action
requests.

TIPStar provides access to ViewPoint's normal set of TIP tables.

Undo provides facilities that allow an application to register undo opportunities, so that
when the user requests that something be undone, the application is called to do so.

Window defines the low-level window management package used by ViewPoint.

XChar defines the basic character type as defined in the Xerox Character Code Standard as
well as some operations on it.

XCharSetNNN enumerates the character codes in character set NNN.

XCharSets enumerates the character sets defined in the Xerox Character Code Standard.

3-23

Programmer’s Guide

3-24

XComSoftMessage defines messages for some commonly used strings, such as Yes, No,
day-of-the-week, month,and so forth.

XFormat converts various TYPEs into XStrings.
XLReal supports manipulation of real numbers with greater precision than Mesa REALs.

XMessage supports the multilingual requirements of systems that require the text
displayed to the user be separable from the code and algorithms that use it.

XString provides the basic data structures for representing encoded sequences of
characters as defined in the Xerox Character Code Standard. It also provides several
operations on these data structures.

XTime provides facilities to acquire and edit times into XStrings and XStrings into times.

XToken parses XStrings into other TYPEs

ApplicationFolder

4.1

Overview

ApplicationFolder provides access to the folder that contains all the component files of an
application. A full application is composed of one or more beds, a message file, a
description file, and other data files, such as .TIP or .lcons. These components are put into
a folder with a specific file type, called an Application (or ApplicationFolder).

When the application is loaded and started, one of the first things it does is get its data
files. The actual file names of the data files are usually specified in the application’s
description file, which is a file that may be read by using the OptionFile interface. The
application gets its data files by using Applicationfolder.FromName to obtain the
ApplicationFolder file, using Applicationfolder.FindDescriptionFile to get the description file
from the ApplicationFolder [ile, and then using OptionFile.GetStringValue to get the data
files names. (See Usage/F.xamples.)

4.2 Interface [tems

FromName: PROCEDURE {internalName: xstring.Reader]
RETURNS [applicationFolder: nSFile.Reference];

Returns the folder for the given application. internalName is the section name in the
description file. Returns NsFile.nullReference if not found.

FindDescriptionFile: PROCEDURE [applicationFolder: NSFile.Handle]
RETURNS [descriptionFile: NsFile.Reference];

Finds a file with file type = OptionFile (4385) in the applicationFolder. Returns
nsrile.nuliReference if not found.

EventData: TYPE = RECORD |
applicationFolder: nsritle.Reference,
internalName: xstring.Reader];

The application loader also notifies the "ApplicationLoaded" event after loading and
starting an application. EventData is passed as Event.EventData for this event.

4-1

4

ApplicationFolder

4.3 Usage/Examples

4-2

This example code obtains the message file.

-- File: SampleMsgFilelnitimpl.mesa - last edit:

-- Copyright (C) 1985 by Xerox Corporation. All rights reserved.
DIRECTORY

ApplicationFolder usinG [FindDescriptionFile, FromName],
Heap USING [systemZone],

NSFile using [Close, Error, GetReference, Handle, nullHandle, nullReference, OpenByName,

OpenByReference, Reference, Type],
NSString UsING [FreeString, String],
OptionFile usiNG [GetStringValue],
SampleBWSApplicationOps,

XMaessage usING [ClientData, FreeMsgDomainsStorage, Handle, MessagesFromReference,

MsgDomains},
XString usING [FromSTRING, NSStringFromReader, Reader, ReaderBody];

SampleMsgFilelmpli: PROGRAM
IMPORTS ApplicationFolder, Heap, NSFile, NSString, OptionFile, XMessage, XString
EXPORTS SampleBWSApplicationOps = {

-- Data

h: xMessage.Handle « nit;

localZone: UNCOUNTED ZONE « Heap.systemZone;

-- Procedures

DeleteMessages: PROCEDURE [clientData: xmessage.ClientData] = (};
GetMessageHandle: PUBLIC PROCEDURE RETURNS [XMessage.Handle] = {ReTurn[h]};

InitMessages: PROCEDURE = {
internalName: xstring.ReaderBody « Xstring. FromSTRING ["SampleBWSApplication"L];
msgDomains: xMessage.MsgDomains « NiL;
msgDomains « XMessage.MessagesFromReference {
file: GetMessageFileRef [ApplicationFolder.FromName [@internalName]],
clientData: NiL,
proc: DeleteMessages |;
h « msgDomains[0].handle;
XMessage.FreeMsgDomainsStorage [msgDomainsj;

};

GetMessageFileRef: PrROCEDURE [folder: NSFile.Reference]
RETURNS [msgFile: NSFile.Reference « NsFile.nullReference] = {
folderHandle: Nsrile.Handle « NsFile.OpenByReference [folder];

ViewPoint Programmer’s Manual 4

- internalName: xstring.ReaderBody « xstring.FromsTRING ["SampleBWSApplication"L];
—’ messageFile: xstring.ReaderBody ¢ xstring. FromsTRING ["MessageFile"L];

FindMessageFileFromName: PROCEDURE [value: xstring.Reader] = {
nssName: NSString.String « xstring.NSStringFromReader [r: value, z: localZone];
msgFileHandle: NsFile.Handle «- nsFile.nullHandle;
msgFileHandle « NSFile.OpenByName [directory: folderHandle, path: nssName !
NsFile.Error = > {msgFileHandle « NsFile.nullHandle; cONTINUE}];
if msgFileHandle = Nsrile.nullHandle THEN ERROR; -- no message file!
msgFile «— NSFile.GetReference [msgFileHandle];
NSFile.Close [msgFileHandle];
NSString.FreeString [z: localZone, s: nssName};

Y

OptionFile.GetStringValue [section: @internalName, entry: @messagefFile,
callBack: FindMessageFileFromName,
file: ApplicationFolder.FindDescriptionFile [folderHandle]];

NsFile.Close [folderHandle];

&
-~ Mainline code

InitMessages|];

}

4-3

4 ApplicationFolder

4.4 Index of Interface Items

Item Page
EventData: TYPE 1
FindDescriptionFile: PROCEDURE 1
FromName: PROCEDURE 1

4-4

Atom

5.1 Overview

Although it is often convenient to name an object using a textual name, XStrings are
somewhat clumsy to compare and pass around. An afom is a one-word datum that has a
one-to-one correspondence with a textual name. Using atoms, objects may be named
textually without having to store, copy, and compare the strings themselves. Atoms were
made popular by the Lisp language.

The textual name associated with an atom is called its PName, just as it is in Lisp. If two

atoms are equal, they correspond to the same PName and vice versa. An atom may also
have properties associated with it; a property is a [name, value] pair.

5.2 Interface Items

5.2.1 Making Atoms
ATOM: TyPe(1];
null: ATOM = LooPHOLE([O].
An ATOM is a one-word datum that has a one-to-one correspondence with a textual name,
or PName. If two ATOMSs are equal, they correspond to the same pName If two pNames
are equal, they correspond to the same ATOM.
Make: PROCEDURE [pName: xstring.Reader] RETURNS [atom: ATOM];
MakeAtom: PROCEDURE [pName: LONG STRING] RETURNS [atom: ATOM];
MakeAtom and Make return the ATOM corresponding to pName, creating one if
necessary. In pName, uppercase and lowercase characters are different and result in
different ATOMs. The atom returned is valid for the duration of the boot session, and the

pName is remembered for the duration of the boot session.

GetPName: PROCEDURE [atom: ATOM] RETURNS [pName: xstring.Reader];

Atom

GetPName returns the name of atom, returning NiL if atom is null. It raises the error
NoSuchAtom if atom is not valid.

5.2.2 Error
NoSuchAtom: ERROR;
NoSuchAtom may be raised by GetPName, PutProp, GetProp, or RemoveProp. It is raised

when an operation is presented with an ATOM for which no Make or MakeAtom operation
has been done in the boot session. Such atoms are called invalid atoms.

5.2.3 Property Lists
Pair: TYPE = RECORD [prop: ATOM, value: RefAny];
RefAny: TYPE = LONG pouyTER;
RefPair: TYPE = LONG POINTER TO READONLY Pair;

Pair defines the [name, value] pair for a property. Properties are named by atoms and have
long pointers as values. Property pairs are referenced by a read-only pointer.

PutProp: PROCEDURE [onto: ATOM, pair: Pair];

PutProp adds a property pair to onto. If the property already exists, the value is updated.
If onto is null, no action takes place. PutProp raises the error NoSuchAtom if onto is not
valid.

GetProp: PROCEDURE [onto, prop: ATOM] ReTURNS [pair: RefPair];
GetProp returns the property pair whose property name is the atom prop from atom onto.
If onto does not have a property whose name is prop or onto is null, NiL is returned.

GetProp raises the error NoSuchAtom if onto is not valid. Note: The client may not
change the property pair.

RemoveProp: PROCEDURE [onto, prop: ATOM];
RemoveProp removes the property pair whose property name is the atom prop from atom

onto. If onto is null, no action takes place. RemoveProp raises the error NoSuchAtom if
onto is not valid.

5.2.4 Enumerating Atoms and Property Lists
MapAtomProc: TYPE = PROCEDURE [ATOM] RETURNS [BOOLEAN];

MapAtomProc is used by MapAtom to enumerate atoms. When it returns TRUE, the
enumeration stops.

MapAtoms: PROCEDURE [proc: MapAtomProc] RETURNS [lastAtom: ATOM];

ViewPoint Programmer’s Manual 5

MapAtoms enumerates the atoms, calling proc once for each atom. If proc returns TRUE,
MapAtoms returns that atom. If proc never returns TRUE, MapAtoms returns null.

MapPListProc: TYPE = PROCEDURE [RefPair] RETURNS [BOOLEAN];

MapPListProc is used by MapPList to enumerate property lists. When it returns TRUE, the
enumeration stops. Note: The client may not change the property pair.

MapPList: PROCEDURE [atom: ATOM, proc: MapPListProc] RETURNS [lastPair: RefPair];

MapPList enumerates the property list of atom, calling proc once for each pair. If proc
returns TRUE, MapPList returns that pair. If proc never returns TRUE, MapPList returns NiL.

5.3 Usage/Examples

Atom is most appropriately used for communicating names and permanent data between
separate applications or between far-flung parts of a single application. The AtomicProfile
interface is an example of this use.

However, ATOMs and atom property lists add to the working set of every application, and
thus degrade system performance as a whole. This happens because Atom must make a
copy of the atom name in its (permanent) database, and every client of Atom uses that
database. It is much better to keep an application’s data separated from other data.

Property lists are a shared, global resource and should be used for sharing other global
resources. They should not be used for transient data. For example, consider the chaos that
would ensue if several instances of an application were running simultaneously and each
assumed that the property list of a particular atom was its to read and write. (Of course,
this interference could also result from different applications running at different times.)

ATOMs take a significant amount of time to create. Applications interested in good
performance will only use ATOMs if they need a runtime-extendable enumeration; a
simple compile-time enumeration is much more efficient.

If you want an atom with a property list for a private or transient usage (a bad idea in any
case) you must make sure that the atom is unique, so as not to interfere with other
applications using the same atom. Code such as

myList: Atom.ATOM = Atom.MakeAtom["string list"L]; -- WRONG

must be replaced by code that gives an atom name that is unique to the application or
module (or instance, if multiple instances may be running).

Two of the major uses of atoms are in the Event and TIP interfaces. In the Event interface,
atoms name events. In the TIP interface they are used in TIP tables and TIP results to name
actions. (See those interfaces for more information.)

Jt
\
ot

Atom

The names of atoms are case sensitive. For example, atom1 and atom2 are not equal,
while atom1 and atom3 are equal.

atom1: ATOM = MakeAtom([”"Atom“L];
atom2: ATOM = MakeAtom["ATOM"L];
atom3: ATOM = Make[GetPName[atom1]];

The value of an atom is a function of the characters of its name and the names of the atoms
that have been previously created. Atoms may not be pickled (put in a permanent
representation that may be filed and recovered later) or transmitted to another system.
The atom is just a convenient way to represent and manipulate the name, which is the
permanent representation.

bv

ViewPoint Programmer’s Manual

5.4 Index of Interface Items

Item

ATOM: TYPE
GetPName: PROCEDURE
GetProp: PROCEDURE
Make: PROCEDURE
MakeAtom: PROCEDURE
MapAtomProc: TYPE
MapPList: PROCEDURE
MapPListProc: TYPE
MapAtoms: PROCEDURE
NoSuchAtom: ERROR
null: ATOM

. Pair: TYPE

PutProp: PROCEDURE
RefAny: TYPE

RefPair: TYPE
RemoveProp: PROCEDURE

Page

NNNNN=2SNNWWOUNS @O N

pll

Ut

Atom

AtomicProfile

6.1 Overview

The AtomicProfile interface provides a general mechanism for storing and retrieving
global values, such as user name and password. Values are named by atoms and may have
a type of either boolean, long integer, or string. Only one value is associated with each
atom, regardless of type.

Boolean and long integer values are simple values, unlike string values, which are passed
by reference. The value of strings may be gotten by calling the GetString routine, in which

case they must be returned to the implementation using DoneWithString. They may be
gotten by using a callback procedure in EnumerateString.

6.2 Interface Items

6.2.1 Boolean Values
GetBOOLEAN: PROCEDURE [atom: Atom.ATOM] RETURNS [BOOLEAN];

GetBOOLEAN returns the boolean value associated with atom. If no boolean value is
associated with atom, GetBOOLEAN returns FALSE.

SetBOOLEAN: PROCEDURE [atom: Atom.ATOM, boolean: BOOLEAN];

SetBOOLEAN associates the boolean value boolean with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

6.2.2 Integer Values
GetLONGINTEGER: PROCEDURE [atom: Atom.ATOM] RETURNS [LONG INTEGER];

GetLONGINTEGER returns the long integer value associated with atom. If no long integer
value is associated with atom, GetLONGINTEGER returns 0.

ir-1

6 AtomicProfile

SetLONGINTEGER: PROCEDURE [atom: Atom.ATOM, int: LONG INTEGER |;

SetLONGINTEGER associates the long integer value int with atom. If atom previously had
another value associated with it, that value is replaced. The event AtomicProfileChange is
notified, with event data being a long pointer to atom.

6.2.3 String Values
GetString: PROCEDURE [atom: Atom.ATOM] RETURNS [Xstring.Reader];

GetString returns the string value associated with atom. The string is reference-counted,
and the client must return the string by calling DoneWithString. If there is no string
value associated with atom, GetString returns NiL.

DoneWithString: PROCEDURE [string: xstring.Reader};

A reader obtained by using GetString must be returned via DoneWithString so that the
implementation's use-count will be correct. Failure to do so results in a storage leak if the
value of the atom is replaced (see the example below).

EnumerateString: PROCEDURE [
atom: atom.ATOM, proc: PROCEDURE [XString.Reader]];

EnumerateString provides an alternate method of examining the string value of an atom.
If atom has a string value, proc is called with the string value. proc is called from within
the monitor of the implementation. The reader is valid for the duration of the callback, but
proc must not call any of the operations in the implementation. If atom has no string
value, proc is not called.

SetString: PROCEDURE [atom: Atom.ATOM, string: Xstring.Reader,
immutable: BOOLEAN « FALSE |;

SetString associates the string value string with atom. If atom previously had another
value associated with it, that value is replaced. If immutable is FALSE, SetString copies
string's body and byte sequence; otherwise, it only copies the reader body. The client must
not deallocate the byte sequence in this case. The event AtomicProfileChange is notified,
with event data being a long pointer to atom.

6.3 Usage/Examples

AtomicProfile provides a general mechanism for storing and retrieving values. Actual use
by a client depends on knowing the names and expected types of values. ViewPoint defines
some basic values, such as user name and password. Other systems may define other
values.

In the following example, a client keeps track of the user name, which depends on the
AtomicProfileChange event. UserNameChanged is called when any AtomicProfile value is
changed. By examining the event data of the agent procedure, the example can act on
changes to the user name. -

6-2

ViewPoint Programmer’s Manual

atomicProfileChange: Atom. ATOM = atom.MakeAtom["”AtomicProfileChange”L];
fullUserName: Atom ATOM = atom.MakeAtom[”FullUserName”L];
debugging: Atom.ATOM = Atom.MakeAtom(“Debugging”L];

UserNameChanged: Event.AgentProc = {
atomChanged: LONG POINTER TO Atom. ATOM = eventData;
iFatomChanged 1 = fullUserName THEN {
name: xstring.Reader = GetString[fullUserName];
< < do processing of new name > >
IF GetBoOLEAN[debugging] THEN { < < do debugging only code> >};
DoneWithString[name]}};

event.AddDependency|
agent: UserNameChanged, myData: NiL, event: atomicProfileChange];

6

AtomicProfile

6.4 Index of Interface Items

6-4

Item

DoneWithString: PROCEDURE
EnumerateString: PROCEDURE
GetBOOLEAN: PROCEDURE
GetLONGINTEGER: PROCEDURE
GetString: PROCEDURE
SetBOOLEAN: PROCEDURE
SetLONGINTEGER: PROCEDURE
SetString: PROCEDURE

"
)
o
[

NN =2 N=2 2O NN

(RN

Attention

7.1 Overview

The Attention interface provides a means for displaying messages to the user. It
implements a single window into which messages are displayed. In addition to displaying
messages, the Attention window has a menu to which clients can add system-wide
commands.

There are three types of messages: simple messages, sticky messages, and confirmed
messages. Simple messages have no special semantics. Sticky messages are redisplayed
when a non-sticky message is cleared. Attention keeps track of one sticky message.
Confirmed messages ask for confirmation by the user.

Attention allows messages to be logically appended. Each of the posting operations, Post,
PostSticky, and PostAndConfirm, contains a boolean parameter clear. If clear is TRUE, the
window is cleared before the message is displayed. If not, the message is appended to the
currently displayed message. This allows the client to use Attention to construct complex
messages.

Note that Attention works in concert with BackgroundProcess. If Attention is called from
the Notifier process, the message is posted immediately in the attention window. If
Attention is called from a non-Notifier process that has registered itself with the
background manager by calling BackgroundProcess.ManageMe, then the background
manager intercepts these messages and allows the user to see them later upon request (see
BackgroundProcess for more details). This means that Attention can be called from any
process at any time without worry. Fine point: In ViewPoint 1.0, there was no background manager and
the following restriction applied: The Attention interface could only be called from the Notifier process.

To facilitate message construction, an XFormat.Handle is provided whose format procedure
will post a simple message without clearing the window. See the example below and the
XFormat chapter for more information.

The Attention window has a global system menu. Operations are provided so that clients
may add menu items to this menu, remove items from the menu, or swap items in the
menu.

~
'

7

Attention

7.2 Interface Items

7-2

7.2.1 Simple Messages

Post: PROCEDURE [s: XString.Reader, clear: BOOLEAN ¢« TRUE, beep: BOOLEAN &« FALSE,
blink: BOOLEAN «FALSE];

Post displays the message s in the Attention window. If clear is TRUE, it clears the
Attention window before displaying s; otherwise, it displays s after whatever text is
currently showing. Attention makes its own copy of the reader body and bytes of s. beep
and blink stipulate that the corresponding feedback be presented to the user.

Clear: PROCEDURE;

Clear clears the Attention window of any simple message. If a simple message is being
displayed and there is a current sticky message, the sticky message is displayed. Clear
has no effect if a sticky message is being displayed.

formatHandle: xFormat.Handle;

formatHandle is an XFormat.Handle provided by the Attention window that clients can use
to post simple messages. [ts format procedure logically calls Post with clear being FALSE.
(See below for an example.)

7.2.2 Sticky Messages

Sticky messages are redisplayed when a non-sticky message is cleared. Attention keeps
track of one sticky message.

PostSticky: PROCEDURE [s: xString.Reader, clear: BOOLEAN « TRUE,
beep: BOOLEAN «—FALSE, blink: BOOLEAN « FALSE];

PostSticky appends s to, or replaces, the current sticky message and then displays the new
message in the window. Its operation is: (1) if the window has a simple message or clear,
then clear the window; (2) if the window is clear, then clear the current sticky message;
(3) append s to the current sticky message; and (4) display the new current sticky message.
Attention makes its own copy of the reader body and bytes of s. beep and blink are the
same as in Post above.

ClearSticky: PROCEDURE;

ClearSticky clears any current sticky message. If a sticky message is being displayed, the
window is cleared. ClearSticky has no effect if there is no sticky message.

7.2.3 Confirmation Messages

PostAndConfirm: PROCEDURE [
s: xstring.Reader, clear: BOOLEAN « TRUE, confirmChoices: ConfirmChoices « [NiL, NIL],
timeout: Process. Ticks «~dontTimeout,

ViewPoint Programmer’s Manual 7

beep: BOOLEAN «FALSE, blink: BOOLEAN « FALSE]
RETURNS [confirmed, timedOut: BOOLEAN];

ConfirmChoices: TYPE = RECORD [yes, no: Xxstring.Reader];
dontTimeout: Process.Ticks = 0;

PostAndConfirm acts like Post in displaying the message s but waits for confirmation by
the user. The confirmChoices messages are displayed, and the user should select one of the
choices with the mouse. If the user selects yes, confirmed is returned TRUE; if no is selected
or the sTOP key is depressed, confirmed is returned FALSE. If confirmChoices.yes # NIL and
confrmChoices.no = NIL, then only confirmChoices.yes is posted and confirmChoices.no
is ignored. This is useful for posting a message that the user must see, but for which the
user gets no choice, such as "Unable to communicate with the printer: CONTINUE".
PostAndConfirm absorbs all user input except the sTOP key and mouse actions over the yes
and no messages. The client may specify a timeout value, which causes PostAndConfirm
to return confirmed FaLSE and timedOut TRUE if the user does not act within timeout ticks.
The default value dontTimeout disables this timeout teature. Attention makes its own
copy of the reader body and bytes of's.

7.2.4 System Menu
AddMenultem: PROCEDURE [item: MenuData.ltemHandle];
AddMenultem adds item to the global system menu.
RemoveMenultem: PROCEDURE [item: MenuData.ltemHandlei;

RemoveMenultem removes item from the global system menu. There is no effect if item is
not in the menu.

SwapMenultem: PROCEDURE [0ld, new: MenuData.ltemHandle]; .

SwapMenultem swaps new for old in the global system menu. SwapMenultem[old: NiL,
new: item] is equivalent to AddMenultem([item: item] and SwapMenuitem[old: item,
new: NiL] is equivalent to RemoveMenultem[item: item].

7.3 Usage/Examples

The following example has a client displaying the name and size of a file. The example
uses the NSFile interface to access the file and get the name and size attributes. See the
Services Programmer’s Guide (610E00180): Filing Programmer’s Manual for
documentation on the NSFile interface.

PostNameAndSize: PROCEDURE [file: NsFile.Handle] = {
nameSelections: NsFile.Selections = [interpreted: [name: TRUE]];
attributes: Nsrile.AttributesRecord;
rb: xstring.ReaderBody « Message[theFile];

Attention.Post[s: @rb, clear: TRUE]; -- start a new message
NSFile.GetAttributes [file, nameSelections, @attributes];
XFormat.NSString[Attention.formatHandle, attributes.name];
nsFile.ClearAttributes [@attributes];

7 Attention

xfFormat.ReaderBodyl[h: Attention.formatHandle, rb: Message[contains]];

xFormat.Decimal[h: Attention.formatHandle, n: NsFile.GetSizelnBytes[file]]; A_—,
rb « Message[bytes];

Attention.Post[s: @rbl}; -- clear defaults to FALSE

Message: PROCEDURE [key: {theFile, contains, bytes}] RETURNS [xstring.ReaderBody] = {

b
An example of the resulting message displayed in the Attention window is
The file Foo contains 53324 bytes

The example intermixes use of the format handle and use of the Post procedure. A client
could clear first, using the Clear procedure, and then display the message by just using the
format handle. Note: In a multilingual environment constructing a sentence from pieces
like this is not recommended because the grammar of other languages could cause this
sentence to be rather confusing.

-.\J
IR

ViewPoint Programmer’s Manual

7.4 Index of Interface Items

Item

AddMenultem: PROCEDURE
Clear: PROCEDURE

ClearSticky: PROCEDURE
ConfirmChoices: TYPE
dontTimeout: Process. Ticks
formatHandle: xFormat.Handle
PoOst: PROCEDURE
PostAndConfirm: PROCEDURE
PostSticky: PROCEDURE
RemoveMenultem: PROCEDURE
SwapMenultem: PROCEDURE

v
]
o

)

W W INNNNWWNNW

-1

Attention

7-6

-’

BackgroundProcess

8.1

Overview

BackgroundProcess provides basic user feedback and control facilities to clients that want
to run in a process other than the Notifier process (see the Natifier chapter). Once
registered with BackgroundProcess, the client process can use Attention to post messages
and check to see if the process has been aborted by the user. The user can look at the
messages posted by the process and abort the process. Fine point: The implementation of
BackgroundProcess is a plug-in, so the user interface depends on a particular background manager. See
ViewPoint friends-level documentation for details on how to build a background manager.

8.2 Interfabe Items

ManageMe: ManageProc;

ManageProc: TYPE = PROCEDURE [
name: XString.Reader,
callBackProc: CallBackProc,
window: Window.Handle «NIL,
icon: Containee.DataHandle «NiL,
context: LONG POINTER « NiL,
abortable: BOOLEAN «FALSE

]

RETURNS [finalStatus: FinalStatus];

CallBackProc: TYPE = PROCEDURE [context: LONG POINTER]
RETURNS [finalStatus: FinalStatus];

FinaiStatus: TYPE = MACHINE DEPENDENT{
importantFailure(0), failure, quietSuccess, success, aborted, firstFree, last(15)};

A client process that wishes to be managed calls ManageMe. The client should already be
in the process that it wishes to have managed,; if the client starts in the Notifier, the client
should do a FORK and call ManageMe from the forked process. name is a string that the
background manager may use to identify the process to the user. After ManageMe is
called, the background manager calls callBackProc with context to give control back to the
client process. If the process is prepared to catch ABORTED, then abortable should he TRue. if

3-1

8 BackgroundProcess

the process is not prepared to catch ABORTED, then abortable should be FaLSE (see the
Aborting Processes section below). window and icon may be provided for use by the
background manager; if the process is tied to a particular window or icon, the background
manager may use these to allow the user to manipulate the process via the window or icon.
When the client process is completed or aborted, it should return from callBackProc with a
finalStatus indicating the outcome of the process. importantFailure indicates that the user
should be warned that the process terminated in a way that might need attention. failure
indicates that the process failed in some way but that the user does not need to be
informed in any special way. quietSuccess indicates that the process should go away
without any final notice to the user. success indicates that the process succeeded and that
a final status message may be posted. aborted indicates that the user aborted the process.

UserAbort: PROCEDURE {process: PROCESS « nullProcess] RETURNS [BOOLEAN];
ResetUserAbort: PROCEDURE [process: PROCESS « hullProcess];
nullProcess: PROCESS = LOOPHOLE[O];

UserAbort returns TRUE if the user has requested that the process be aborted.
ResetUserAbort clears any pending abort; if the user has requested an abort, UserAbort
returns TRUE until ResetUserAbort is called or the process terminates.. [f process is
defaulted to nullProcess, both procedures assume that the current process is the process
that called ManageMe. process should only be used if the process calling UserAbort or
ResetUserAbort is different from the process that called ManageMe.

8.3 Usage/Examples

8.3.1 Posting Messages

Once a client process has called ManageMe, it can freely post messages by using
Attention. Fine point: the exact method by which the messages will be displayed is up to the background
manager. Also, dnly the client process that originally called ManageMe can call Attention directly. If a
background process has any associated subprocesses that need to use Attention to post messages, it must use a
friends-level Attention interface to associate the subprocess with the client’s main background process.

8.3.2 Aborting processes

If the user requests that a process be aborted, the background manager either calls
Process.Abort (if ManageMe was called with abortable = TRUE) and expects the client to
catch the ERROR ABORTED, or (if ManageMe was called with abortable = FALSE) sets a flag
that the client can check by calling UserAbort. If ManageMe was called with abortable =
FALSE, the client process should periodically call UserAbort to see if the user has tried to
abort the process. If the client does not check UserAbort, user attempts at stopping the
process have no effect.

ViewPoint Programmer’s Manual 8

8.3.3 Example

This example program illustrates the structure of a typical use of BackgroundProcess. A
MenuProc is provided that can be called from the attention window. The MenuProc
immediately forks a process, which reduces its priority, and then calls
BackgroundProcess. The example program posts four messages, pausing between each
and checking UserAbort on each pass.

backgroundName: xstring.ReaderBody ¢ Xxstring.FromSTRING["Background Post"L];
abortedString: xstring.ReaderBody « xString. FromSTRING("Process canceled ..."];

Init: PROCEDURE = {
Attention.AddMenultem [
MenuData.Createltem [
zone: z, -- some private zone
name: @backgroundName,
proc: BackgroundProcessPost] |;

BackgroundProcessPost: MenuData.MenuProc = {
process.Detach [FORk DoBackgroundProcessPost[s: @backgroundName]}};

DoBackgroundProcessPost: PROCEDURE [s: XString.Reader] = {
Dolt: BackgroundProcess.CallBackProc = {
FORi: CARDINALIN [1..4] DO
IF BackgroundProcess.UserAbort{] THEN {
Attention.Post[@abortedString];
RETURN[aborted]};
Attention.Post [s: s];
Attention.formatHandle.Blanks[2];
Attention.formatHandle.Decimall[il;
Process.Pause [Process.SecondsToTicks[10]];
ENDLOOP;
RETURN [success]};

Process.SetPriority[Process.priorityBackground];
[] & BackgroundProcess.ManageMe [name: @rb1, callBackProc: Dolt]};

8

BackgroundProcess

8.4 Index of Interface Items

8-4

Item

CaliBackProc: TYpe
FinalStatus: Tyee
ManageMe: PROCEDURE
MangeProc: TYPE
nullProcess: PROCESS
ResetUserAbort: PROCEDURE
UserAbort: PROCEDURE

Page

N NN = & a e

BlackKeys

9.1

Overview

The BlackKeys interface changes the interpretation of the main (central) section of the
physical keyboard. It includes the data structures that define a keyboard record as well as
the procedures used to manipulate the keyboard stack.

The average client uses.only the data structures that the BlackKeys interface provides.
The procedures are reserved for a keyboard manager interested in interfacing between the
user and the blackkeys stack of keyboards. ‘

9.2 Interface Items

9.2.1 Keyboard Data Structures

The BlackKeys data structures provide the framework for client-defined keys in the main
(central) section of the physical keyboard. This includes interface to a keyboard picture
whose keytops may be selected with the mouse to simulate pressing the physical key on
the keyboard.

Keyboard: TYPE = LONG POINTER TO KeyboardObject « NiL;

KeyboardObject: TYPE = RECORD [
table: Tip.Table «NiL,
charTranslator: Tip.CharTranslator « (proc: NiL, data: NIL],
pictureProc: PictureProc «Nit,
label: xstring.ReaderBody « xstring.nullReaderBody,
clientData: LONG POINTER « NIL];

KeyboardObiject is the keyboard interpretation data structure. The client may provide its
own TIP.Table or default it to NiL, in which case the Normaikeyboard.TIPtable is used. (See
Appendix A for productions returned by Normaikeyboard.TIP). A Tip.CharTranslator may be
provided to handle CHAR and BUFFEREDCHAR productions from a Tip.Table. A PictureProc may
be provided to be called when installing or removing this keyboard. Absence of such a
procedure assumes no picture is associated with this keyboard. label is the string that

9-1

9 BlackKeys

appears in the SoftKeys window when the KEYBOARD key is pressed down. Pressing (or
selecting) the key marked label invokes this keyboard. clientData is provided to associate
any other information the client might need to keep with the keyboard.

PictureProc: TYPE = PROCEDURE [
keyboard: Keyboard,
action: PictureAction]
RETURNS [
picture: Picture « nullPicture,
geometry: GeometryTable «nNiL];

PictureProc is a client-provided procedure that is called by a keyboard window application
when the client's keyboard is being installed (action = acquire) or removed (action =
release) from the top of the blackkeys stack of active keyboards. The client may use this
opportunity to map or unmap the picture and geometry table that the keyboard window
application uses.

PictureAction: TYPE = {acquire, release);

acquire = client’s keyboard is being installed at the top of the keyboard stack
(becoming the current keyboard).

release a client’s keyboard is being removed from the top of the keyboard stack.

PictureType: TYpe = {bitmap, text};

Picture: TYPE = RECORD [
variant: SELECT type: PictureType FROM
bitmap = > [bitmap: LONG POINTER],
text = > [text: xString.Reader]
ENDCASE];

The variant of the record, Picture, allows the client to present its keyboard window in
either bitmap or textual form. (See the KeyboardWindow interface for a discussion of the
structure behind a keyboard bitmap.) text is pointed to by an Xstring.Reader. The text is
not copied.

nullPicture: bitmap BlackKeys.Picture = [bitmap([niL]];

The variable nullPicture represents a null entry to the keyboard window.

GeometryTable: TYPE = LONG POINTER;

A geometry table allows access to the data structure. (See the KeyboardWindow interface
chapter for discussion of the structure of a geometry table.)

9.2.2 Getting a Handle to the Current Keyboard

BlackKeysChange: Event.EventType; -- ATOM defined as "BlackKeysChange”

9-2

ViewPoint Programmer’s Manual 9

Changing the keyboard at the top of the blackkeys stack of keyboards results in the
notification BlackKeysChange through the Event mechanism. The eventData supplied by
the Event.Notify is the current keyboard handle.

GetCurrentKeyboard: PROCEDURE RET{JRNS [current: Keyboard];

GetCurrentKeybhoard returns the current keyboard from the top of the blackkeys stack.

)

9.2.3 Procedures
Push: PROCEDURE [keyboard: Keyboard];
The Push procedure installs a black key interpretation at the top of the blackkeys stack of
keyboards. The Tip.Table and/or Tir.CharTranslator are registered with TP and the event
BlackKeysChange is broadcast.
Remove: PROCEDURE [keyboard: Keyboard];
The Remove procedure removes the keyboard from the stack of active keyboards and
resets the Tip.Table and Tip.CharTranslator as applicable. The event BlackKeysChange is
broadcast if keyboard is on the top of the blackkeys stack.
May raise the ERROR Blackkeys.InvalidHandle.
Swap: PROCEDURE [0ld:Keyboard, new:Keyboard];
The SWap procedure is designed to change black keys' interpretations without r"eturﬁing
to some previous or other default value in between. It is essentially the equivalent of a
Remove followed by a Push. The event BlackKeysChange is broadcast if the keyboard

being removed was on top of the stack.

May raise the ERROR Blackkeys.InvalidHandle.

9.2.4 Errors
InvalidHandle: ERROR;

This error is raised if the keyboard passed to Remove or Swap (old) is not in the set of
active BlackKeys keyboards.

9.3 Usage/Examples

9.3.1 Defining a Keyboard Record

DefineKeyboard: PROCEDURE =
BEGIN
namesString: xstring.ReaderBody « Xstring.FromSTRING["Swahili"L]

swahiliKeyboardRecord: BlackKeys.KeyboardObject « [
table: NIL,
charTranslator: (MakeChar, NiL],

-3

BlackKeys

9-4

pictureProc: MapBitmapFile,
label: xstring.CopyToNewReaderBodyl@nameString, Heap.systemZonel]];
--Save the pointer to the record somewhere for future use --
END; --DefineKeyboard --

MapBitmapFile: BlackKeys.PictureProc =
BEGIN
pixPtr: BlackKeys.Picture.bitmap « 8lackKeys.nullPicture;
SELECT action FROM
acquire = >
{--Do the right thing to map the bitmap. Uses the default geometry table. --
RETURN[pixPtr, Keyboardwindow.defaultGeometry] };
release = > {--Do the right thing to unmap the bitmap --
RETURN[BlackKeys.nullPicture, NiL] }
END; -- MapBitmapFile

MakeChar: Tir.KeyToCharProc =

BEGIN

--Map bufferedChar to desired xstring.Character --
END; -- MakeChar

ViewPoint Programmer’s Manual

9.4 Index of Interface Items

Item

BlackKeysChange: Event.EventType
GeometryTable: TYpe
GetCurrentKeyboard: PROCEDURE
InvalidHandle: ERROR

Keyboard: TYpEe
KeyboardObject: Tvpe
nullPicture:bitmap Picture

Picture: TYpPEe

PictureAction: TYpe

PictureProc: TYPE

PictureType: TYPE

Push: PROCEDURE

Remove: PROCEDURE

Swap: PROCEDURE

<
]
o

@

W W W iNNINNN=2 =2 WWNN

9-5

BlackKeys

9-6

10

BWSAttributeTypes

10.1 Overview

BWSAttributeTypes defines the Nsrile.ExtendedAttributeTypes that are used by
ViewPoint as well as the first NsFile.ExtendedAttributeType available for client use.

The only extended attributes defined here are the ones that can be attached to any file,
such as mailing and filing application attributes. Attributes that are unique to a
particular application's files should be defined privately within that application. Several
applications can use the same extended attributes because application A should never be
reading the attributes from application B's files and vice versa. Fine point: Several application-
specific attribute types are included in this interface for compatibility.

The extended attributes that can be attached to any file, leaving a few spare ones for
future use. are defined here. Also defined are the first available "application attribute”
(firstAvailableApplicationType). Caution: An application should not use an extended
attribute smaller than this one, nor should an application use an extended attribute larger
than lastBWSType.

10.2 Interface Items

10.2.1 Available Application Types
firstAvailableApplicationType: NsFile.ExtendedAttributeType = .. .;
lastBWSType: NsFile.ExtendedAttributeType = . ..;

Applications should only use the types in the range [firstAvailableApplicationType . .
lastBWSType]. firstAvailableApplicationType is the first extended attribute type that
applications can use to store application-specific attributes. Caution: An application
should not use an extended attribute smaller than firstAvailableApplicationType.
lastBWSType is the last extended attribute type that applications can use to store
application-specific attributes. Caution: An application should not use an extended
attribute larger than lastBWSType.

10-1

10

BWSAttributeTypes

10-2

If a Viewpoint client needs more attributes than the number in this range, see the
NSFiling group to obtain a range specific to that client.

10.2.2 Viewpoint Types

Consult the Mesa interface for the exact assignment of ViewPoint-specific types.

5,

ViewPoint Programmer’s Manual

10

10.3 Index of Interface Items
Item

firstAvailableApplicationType: NsFile.ExtendedAttributeType
lastBWSType: NsFile.ExtendedAttributeType

Page

1
1

10-3

]. 0 BWSAttributeTypes

10-4

11

BWSFileTypes

11.1 Overview

BWSFileTypes defines several NSFile.Types used by ViewPoint. Applications should not use
these types. (Also see the Catalog and Prototype interfaces.)

ViewPoint clients must manage all file types that they use. Ranges of file types may be
obtained from the Filing group.

11.2 Interface Items
root: NSFile.Type = ...,

The root file of the volume has this. type. The root has children that are called (by
convention) catalogs.

desktop, desktopCatalog: NSFile.Type = ... ;

The desktop catalog contains all the desktops on a workstation. An individual desktop has
the same type as the desktop catalog.

prototypeCatalog: NsFile.Type = ... ;

The prototype catalog contains prototype files for each application. A prototype file is a
blank application file that the user can make copies of, such as Blank Folder, or Blank
Document. (See the Prototype interface.)

systemFileCatalog: nNsFile.Type = ... ;

The system file catalog contains system files, such as the beds for an application, message
files, font files, TIP files,and so forth. (See the Catalog interface.)

11

BWSFileTypes

11.3 Index of Interface Items

Item

desktop: NSFile. Type
desktopCatalog: NsFile.Type
prototypeCatalog: NsFile.Type
root: NsSFkile. Type
systemFileCatalog: NSFile.Type

Page

e B N B)

J

12

Il

BWSZone

12.1 Overview

BWSZone defines several zones, each with different characteristics, that ViewPoint
clients may use, as appropriate.

12.2 Interface Items
All zones are created at boot time and exist for the duration of the boot session.
permanent: UNCOUNTED ZONE;
Permanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

permanent is intended for nodes that are never deallocated. It has infinite threshold.
Permanent returns permanent.

logonSession: UNCOUNTED ZONE;

LogonSession: PROCEDURE RETURNS [UNCOUNTED ZONE];

logonSession is intended for nodes that last for a logon/logoff session. logonSession is
emptied of all nodes at each logoff (that is, Heap.Flush). LogonSession returns
logonSession. logonSession is created at boot time and is flushed at logoff.

shortLifetime: UNCOUNTED ZONE;

ShortLifetime: PROCEDURE RETURNS [UNCOUNTED ZONE];

shortLifetime is intended for nodes that are allocated for a very short time, such as during
a notification. ShortLifetime returns shortLifetime.

semiPermanent: UNCOUNTED ZONE;
SemiPermanent: PROCEDURE RETURNS [UNCOUNTED ZONE];

semiPermanent is intended for nodes that are allocated for a very long time but that might
occasionally have to be expanded. SemiPermanent returns semiPermanent.

12-1

12

BWSZone

12.3 Index of Interface Items

12-2

Item

LogonSession: PROCEDURE
logonSession: UNCOUNTED ZONE
Permanent: PROCEDURE
permanent: UNCOUNTED ZONE
SemiPermanent: PROCEDURE
semiPermanent: UNCOUNTED ZONE
ShortLifetime: PROCEDURE
shortLifetime: UNCOUNTED ZONE

Page

- ed e ok ed wd =D

13

Ul

Catalog

13.1 Overview

Catalog manipulates files called catalogs that are direct descendants of the root file on a
NSFiling volume. Each catalog is uniquely identified by its file type. Files can be opened
and created within a catalog. Catalogs can be opened, created, and enumerated.

Viewpoint creates a system file catalog and a prototype catalog (see the Prototype
interface) at boot time. The system file catalog typically holds font files, TIP files, icon
picture files, message files,and so forth.

-’ 13.2 Interface Items

13.2.1 Finding and Creating Files in a Catalog

GetFile: PROCEDURE [
catalogType: NsFile. Type « BWSFileTypes.systemFileCatalog,
name: xstring.Reader,
readonly: BOOLEAN «FALSE,
session: NSFile.Session « NSFile.nuilSession]
RETURNS [file: NSFile.Handle];

GetFile finds a file with name name in the catalog with type catalogType. If the file cannot
be found, NsFile.nullHandle is returned.

CreateFile: PROCEDURE [
catalogType: NsFile.Type « BwsFileTypes.systemFileCatalog,
name: Xstring.Reader,
type: NsFile.Type,
isDirectory: BOOLEAN «FALSE,
size: LONG CARDINAL « 0,
session: NSFile.Session « NsFile.nullSession]
RETURNS [file: NSFile.Handle];

13-1

13

Catalog

13-2

CreateFile creates a file with the specified attributes (name, type, isDirectory, size in
bytes) in the catalog with type catalogType.

13.2.2 Operating on Catalogs

Open: PROCEDURE [
catalogType: nsFile. Type,
sassion: NSFile.Session « NSFile.nullSession]
RETURNS [catalog: NsFile.Handle];

Opens the catalog with type catalogType. If the catalog cannot be opened, it returns
NSFile.nullHandle.

Create: PROCEDURE
name: Xstring.Reader,
catalogType: NsFile. Type,
session: NSFile.Session «NsFile.nullSession]
RETURNS [catalog: NsFile.Reference];

Creates a catalog with the specified name and type. If the catalog already exists or cannot
be created, it returns NsFile.nullReference. Note: Even though the file can be identified by
type only, the name should be logical (such as "System Files") so that any tools written to
manipulate catalogs can display these names.

Enumerate: PROCEDURE [proc: CatalogProc];

CatalogProc: TYPE = PROCEDURE [catalogType: NsFile.Type]
RETURNS [continue: BOOLEAN « TRUE];

Enumerate calls the client-supplied proc for each existing catalog or until proc returns
FALSE.

beforelLogonSession: NSFile.Session;
beforeLogonSession is a session that can be used when calling a Catalog procedure before

any user has logged on, such as at boot time. It is set to be the default session until a user
logs on.

ViewPoint Programmer’s Manual

13

13.3 Index of Interface Items
Item

beforeLogonSession: NsFile.Session
CatalogProc: TYPE

Create: PROCEDURE

CreateFile: PROCEDURE

Enumerate: PROCEDURE

GetFile: PROCEDURE

Open: PROCEDURE

Page

N =aN=a2aNNN

13 Catalog

13-4

14

-’
Containee
14.1 Overview
Containee is an application registration facility. An application is a software package that
implements the manipulation of one type of file. Containee is a facility for associating an
application with a file type.
14.1.1 Background
J All NSFiles have:
N’

® A name

@ A file type (LONG CARDINAL)

o A set of attributes, such as create date

o Either:

¢ Content, such as a document
® Children that are also NSFiles, such as a folder.
An NSFile that has children is often called a directory. Fine point: An NSFile can actually have both
content and children; however, to simplify this discussion, this point is ignored. Because the children of an
NSFile can themselves have children, NSFile supports a hierarchical file system.
A ViewPoint desktop is backed by an NSFile that has children. Each child file of the
desktop's NSFile is represented on the screen by an iconic picture.
Each application operates on NSFiles of a particular file type. For example, ViewPoint
documents operate on NSFiles with file type of 4353. Each document icon is actually an
NSFile of type 4353. Each application needs a way to register its ability to operate on files
of a particular type. Containee is such a facility.
14.1.2 Containee.Implementation
A — An application’s ability to operate on files of a particular type includes such operations as:

14-1

14 Containee
@ Display of the iconic picture (full size and tiny)
® Open, performed when the user selects an icon and presses OPEN
® Properties, performed when the user selects an icon and presses PROPS
® Take the current selection, performed when the user drops an object onto an icon

by COPYing or MOVEing a selected object to an icon.

An application registers itself by calling Containee.Setlmplementation, supplying a file

type and a Containee.lmplementation. A Containee.Implementation is a record that contains -

two important procedures:

® A procedure for displaying an icon picture (Containee.PictureProc)
® A procedure for performing various operations on an icon, such as open, create a
property sheet, and take the current selection (Containee.GenericProc).

This application registration allows the ViewPoint desktop implementation to be open-
ended. The desktop implementation itself does not know how any file behaves. Instead, it
depends on applications registering their ability to operate on particular file types. The
desktop implementation, at logon, simply enumerates the child files of the desktop's
NSFile (using NsFile.List), obtaining the file type for each child. For each child file, the
desktop implementation gets an application's Containee.Impiementation by using the child
file's file type (and Containee.Getlmplementation) and then calls that application's
Containee.PictureProc to display an icon picture. Similarly, when the user selects an icon on
the desktop and presses OPEN, the desktop implementation uses the file type of the file at
that place on the desktop to get the application’s Containee.lmplementation. It then calls

the application’s Containee.GenericProc to get a StarWindowShell created. The

implementations of Folders and File Drawers are similar to the desktop implementation
in this respect.

14.1.3 Containee.Data

An application needs to distinguish one file from another. Two different documents may
be the same file tvpe but probably have different names and different contents. Whenever
an application’s Containee.DisplayProc or Containee.GenericProc is called, the particular file
being operated on by the user is passed to the procedure through the Containee.DataHandle
parameter. A Containee.DataHandle is a pointer to a Containee.Data that is simply a record
with an NsFile.Reference in it. An NsFile.Reference uniquely identifies a particular file and
allows the application to use various NSFile file-accessing procedures for manipulating the
file.

14.2 Interface Items

14.2.1 Items for Application Implementors

14-2

Setimplementation: PROCEDURE [NSFile. Type, Implementation]
RETURNS [Implementation];

Setimplementation associates an implementation record with a particular file type and
returns the previous Implementation that was associated with that file type. An

ViewPoint Programmer’s Manual 14

application calls Setlmplementation to register its ability to operate on files of a
particular type.

Implementation: TYPE = RECORD [
implementors: LONG POINTER & NiL,
name: Xstring.ReaderBody « xstring.nullReaderBody,
smallPictureProc: SmallPictureProc «nNi,
pictureProc:PictureProc « NiL,
convertProc: Selection.ConvertProc « NiL,
genericProc:GenericProc «NiL |;

When an application registers its ability to operate on files of a particular type (that is,
calls Setimplementation), it supplies an Implementation record. The Implementation
record defines the behavior of all files of that type.

implementors is provided for the convenience of clients that may want to associate some
application-specific data with the Impiementation record. Note: This data is one per
application, not one per file.

name is a user-sensible name for the objects that the Implementation manipulates, such
as "Document" or "Spreadsheet”. This string typically comes from XMessage. The bytes of
name are not copied--the storage for name must be allocated forever (which is easy to do
by using XMessage).

smallPictureProc is a procedure of type SmallPictureProc that returns a character. This
procedure is described below.

pictureProc is called whenever the file’s full-sized icon picture needs to be painted. (See
PictureProc.)

convertProc is called to convert the file into another form, such as an Interpress master.
This procedure is used when the owner of the current selection is a container, such as a
folder, and the selection is actually a file (row) in the container. The owner of the selection
(that is, the container implementation) may be called-to convert the selected file (row), but
only the application that implements that file's type can do the conversion. The
convertProc allows the owner of the selection to pass the conversion request along to the
application. The data parameter to the convertProc is a Containee.DataHandle. This
convertProc does not need to be able to convert to a target type of file or fileType, but
rather should call Containee.DefaultFileConvertProc for these target types. If the
application does not perform conversion to any target types,
Containee.DefaultFileConvertProc should be provided as the convertProc.

genericProc is where most of the application's real implementation resides. genericProc is
called, for example, to open an icon, to produce a property sheet for an icon, to drop
something on an icon,and so forth. (See GenericProc.)

SmallPictureProc: TYPE = PROCEDURE [
data: DataHandle «niL,
type: NsFile.Type « ignoreType,
normalOrReference: PictureState]
RETURNS [smallPicture: xstring.Character];

PictureState: TYpe = { garbage, normal, highlighted, ghost,
reference, referenceHighlighted };

14-3

14

Containee

14-4

ignoreType: NsFile.Type = LAST[LONG CARDINAL];

The SmallPictureProc returns a character for the application. It is obtained by passing a
13x13-bit icon picture to SimpleTextront.AddClientDefinedCharacter. This character is used
when the file is inside a folder. normalOrReference will be either normal or reference, and
the appropriate small picture should be returned. The SmallPictureProc should try to use
the type parameter first if it is not Containee.ignoreType. If it is ignoreType, the
SmallPictureProc should use the data parameter. This change is necessary to allow the
reference icon application to work properly. Fine point: The picture for normalOrReference =
reference/referenceHighlighted is not normally used by the folder application directly, but rather is used by a
generic reference icon application.

Data: TYPE = RECORD [
reference: NSFile.Reference « Nsrile.nullReference J;

DataHandle: TYPE = LONG POINTER TO Data;
nullData:Data;

Data uniquely identifies a file. An application needs to distinguish one file from another.
Two documents may be the same file type but probably have different names and different
contents. Whenever an application's PictureProc or GenericProc or
Implementation.convertProc is called, the particular file the user is operating on is passed
to the procedure through the DataHandle parameter. An NSFile.Reference uniquely
identifies a particular file and allows the application to utilize various NSFile file-
accessing procedures for manipulating the file. nullData is a constant that should be used
to represent a null Containee.Data.

GenericProc: TYPE a PROCEDURE [
atom: Atom.ATOM,
data:DataHandle,
changeProc:ChangeProc «Nit,
changeProcData: LONG POINTER « NiL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is a procedure supplied by an application as part of an Implementation. The
GenericProc is called to perform one of several operations that a user can invoke. atom
tells the GenericProc what operation to perform. For example, when the user selects an
icon and presses the OPEN key, the application’s GenericProc is called with an atom of
Open is the one for which this application has registered its Implementation.

A GenericProc must return a value. The type of the return value depends on the atom
passed in. Some atoms, their meaning to the GenericProc, and the expected return values
are as follows:

Atom Return Value and Meaning

CanYouTakeSelection LONGPOINTER TO BOOLEAN
[f the application is willing to have the current selection
dropped onto it, the GenericProc should return TRue. This
occurs when the user has selected something, pressed COPY or
MOVE, and then selected one of this application’s files. While
the mouse button is down, the cursor changes to a question
mark if the GenericProc returns FALSE; otherwise, the cursor

ViewPoint Programmer’s Manual , 14

- ;
FreeMenu
Menu
Open
Props
TakeSelection
}‘ﬁ ,UI'/.

stays the same and the icon picture flashes. This operation
should be efficient. It usually involves calling
Selection.CanYouConvert or Selection.HowHard or Selection.Query
to determine what Selection.Targets the selected object can be
converted to. For example, the printing application’s
GenericProc returns TRUE if the current selection can be
converted to an Interpress master.

None

The application should free the menu that was created for the
Menu atom, if any. The MenuData.MenuHandle that was
returned for the Menu atom is passed as the changeProcData.
This atom is not passed to the GenericProc if the Menu atom
returned NIL. The changeProc need not be called for this
atom.

MenuData.MenuHandle

The application may create a menu that the system displays
as a pop-up menu. This atom is passed when the user requests
a pop-up menu for an icon--for example, by pressing both
mouse buttons simultaneously while the mouse is over an icon
on the desktop or in a container window. If the application
returns a menu, then it should be prepared to free the menu
when the FreeMenu atom is passed to the GenericProc. The
changeProc need not be called for this atom.

StarwindowsShell.Handle

The application should create a StarWindowShell. Usualily,
the content displayed in the StarWindowsShell is derived from
the contents of the file. For example, the ViewPoint document
editor application displays the text and graphics contained in
the file, thus making the file ready for viewing, editing, or
both.

Starwindowshell.Handle

The application should create a property sheet. Usually, the
properties shown reflect some attributes of the file. For
example, the Folder property sheet shows the name of the
folder, how it is sorted, and how many objects it contains.
These properties are all NSFile attributes of the file.

LONG POINTER TO BOOLEAN

The action performed for this atom is highly dependent on the
particular application. This atom is passed when the user has
selected something, pressed MOVE, and then selected one of
this application’s files. For some applications, the selected
object should be moved into this application; for example, the
Folder application converts the selected object to a file and
adds the file to the folder. For other applications, the selected
object should be operated on in some application-specific
fashion--for example, the printing application converts the
selected object to an Interpress master (file or stream) and then
sends the master to a printer. The GenericProc should return
TRUE if the operation was successful; FALSE otherwise.

14-5

14

Containee

14-6

TakeSelectionCopy LONG POINTER TO BOOLEAN
This atom has the same meaning as TakeSelection, except it
corresponds to pressing the COPY key rather than MOVE. Again,
its meaning is highly application dependent.

The changeProc must always be called, passing in changeProcData and an indication of
which NSFile attributes have changed, if any. If the execution of the GenericProc causes
any change to the NSFile's attributes, calling the changeProc allows containers (such as
Desktop or Folders) to update the display to reflect the changes. For example, when the
atom is Props, the GenericProc must save the changeProc and return the
starwindowshell.Handle for the property sheet. Then later, if the user changes the file's
name, for example, the application's PropertySheet.MenultemProc gets control when the
user is done and must then retrieve the changeProc and call it. (See the section on
Usage/Examples for more detail.)

If the client's GenericProc is called with an atom that it does not recognize, it should call
the previous GenericProc (using the old Implementation that was returned when it called
Containee.Setimplementation). The original system-supplied GenericProc acts to backstop
all possible atoms.

ChangeProc: TYPE = PROCEDURE [
changeProcData: LONG POINTER «—NiL,
data:DataHandle,
changedAttributes: NsFile.Selections « (]
noChanges: BOOLEAN & FALSE];

A ChangeProc is a callback procedure that is passed to a GenericProc. It must always be
called by the client, regardless of whether an attribute of the file being operated has
changed, to allow deallocation of the changeProcData. The noChanges boolean indicates
the effect on the relevant file's attributes. The changeProcData parameter must be
correctly supplied even for the noChanges = TRUE case. It is used, for example, when the
user changes the name of a file by using a property sheet. When the property sheet is
taken down, the application changes the file's name and the ChangeProc that was passed
to the GenericProc must then be called by the application. (See more detail in the section
on Usage/Examples.)

PictureProc: TYPE = PROCEDURE [
data:DataHandle,
window: window.Handle,
box: window.BOXx,
old, new: PictureState];

PictureState: TYre = {garbage, normal, highlighted, ghost, reference, referenceHighlighted};

A PictureProc is a procedure supplied by an application as part of an Implementation. The
PictureProc is called whenever the desktop implementation needs to have the application's
icon picture repainted or painted differently.

data identifies the particular NSFile whose picture should be painted. The NSFile's file type
is the one for which this application has registered its Implementation. Even though all
files of the same type have the same PictureProc and therefore the same-shaped picture,
each picture differs because the name of the NSFile is often displayed on the picture. An
application's PictureProc can obtain an NSFile's name by using NSFile operations, but may

ViewPoint Programmer’s Manual 14

more easily obtain it by using Containee.GetCachedName. This is one of the primary
intended uses for GetCachedName. (See the section on Attribute Cache.)

window and box should be passed to any display procedures used to paint the icon picture,
such as Display.Bitmap and SimpleTextDisplay.StringintoWindow.

The old and new arguments describe the current and desired states of the icon picture.
garbage is the unknown state. PictureProc is called with new = garbage before moving or
otherwise altering the icon; this lets an application remember an icon's placement. The
application can thus continually update the icon (for example, to represent time of day) or
can force a repaint by using window.lnvalidate (to change the shape of an InBasket icon, for
example). normal is the picture displayed when the icon is not selected. highlighted is the
picture displayed when the icon is selected. ghost is the picture displayed when the icon is
currently open. reference is the picture displayed to represent a remote file.
referenceHighlighted is the highlighted version of reference. The desktop
implementation never uses these last two states, but a generic reference icon application
might.

DefaultFileConvertProc: selection.ConvertProc;

DefaultFileConvertProc is a Selection.ConvertProc that knows how to convert to
selection.Targets of file and fileType. DefaultFileConvertProc should be called from an
application’s Implementation.convertProc for these targets, or should be provided as the
application’s Implementation.convertProc if the application has no convertProc of its own.
No file-backed application’s convertProc should need to worry about these target types.

14.2.2 Items for Application Consumers

These items are not ordinarily used by an application implementation (provider), but
rather by a consumer such as the Desktop or Folder implementation.

Getimplementation: PROCEDURE [NSFile.Type] RETURNS [Implementation];

Getimplementation returns the current Implementation for a particular file type.

14.2.3 DefaultImplementation

Containee supports a single global default Implementation. This default Implementation is
used when the user operates on an NSFile for which no Implementation has yet been
registered.

GetDefaultimplementation: PROCEDURE RETURNS [Implementation];
GetDefaultimplementation returns the current default Implementation.

SetDefaultimplementation: PROCEDURE [Implementation]
RETURNS [Implementation];

The default implementation provides a dummy display and appropriate “Sorry, Desktop is
Unable to Open That Object” complaints in the absence of a particular implementation.
Most clients do not call SetDefaultimplementation.

14

Containee

14-8

14.2.4 Attribute Cache

Clients often want to use several common NsSFile. Attributes. However, it is awkward to pass
the attributes around in calls because the attributes are long, of variable length, and
frequently not needed by the called routine. Therefore, Containee provides a cache
mechanism that can remember and supply popular attributes. Currently, the name and
file type attributes are supported. Containee decouples the management of in-memory
copies of a file's name from parameter-passing arrangements.

GetCachedName: PROCEDURE [data:DataHandle]
RETURNS [name: xstring.ReaderBody, ticket:Ticket];

GetCachedName returns the name attribute of the NSFile referred to by data. If the name
is not in the cache, it is looked up and added to the cache. ticket must be returned (by using
ReturnTicket) when the client is through with the name. The ticket prevents one client

from changing the name while another is looking at it.

GetCachedType: PROCEDURE [data:DataHandle]
RETURNS [type:NsFile.Type];

GetCachedType returns the type attribute of the NSFile referred to by data. If the type is
not in the cache, it is looked up and added to the cache.

InvalidateCache: PROCEDURE [data:DataHandle] ;

InvalidateCache clears any information about the NSFile from the cache. It is typically
called when the attributes of an NSFile are changed by an application. An application
rarely needs to call InvalidateCache, because calling the ChangeProc takes care of it.

InvalidateWholeCache: PROCEDURE ;
InvalidateWholeCache clears the entire cache. Information about all files is cleared.
ReturnTicket: PROCEDURE [ticket: Ticket];

ReturnTicket should be called after calling GetCachedName, when the client no longer
needs the string.

SetCachedName: PROCEDURE [data:DataHandle, newName: xstring.Reader];
SetCachedName allows a client to change a cached name. Care should be taken to keep
the filed name consistent with the cached name. An application rarely needs to call
invalidateCache, because calling the ChangeProc takes care of it.

SetCachedType: PROCEDURE [data:DataHandle, newType:NsFile.Type];

SetCachedType allows a client to change a cached type. Care should be taken to keep the
filed type consistent with the cached type.

Ticket: TYrPe[2];

ViewPoint Programmer’s Manual 14

A Ticket is returned when GetCachedName is called. When the client is through using the
cached name, the ticket must be returned by calling ReturnTicket to prevent one client
from changing the name while another is looking at it.

14.3 Errors and Signals

Error: ERROR [mMsg: XString.Reader « NiL, error: ERROR «— NIL,
errorData: LONG POINTER TO UNSPECIFIED < NIL];

Signal: SIGNAL [msg: xString.Reader « NIL, error: ERROR « NIL,
errorData: LONG POINTER TO UNSPECIFIED € NIL];

An application's GenericProc (and PictureProc and ConvertProc) should never assume that
it has been called by a desktop and therefore should never call such facilities as
Attention.POst or UserTerminal.BlinkDisplay. (The application might be called by CUSP, for
example.) Rather, the application should raise Containee.Error or Signal with an
appropriate message. Containee will not catch these errors. The caller of the application's
GenericProc should catch them and do the appropriate thing. In the typical case, the
ViewPoint desktop calls the application's GenericProc; it catches the error and calls
Attention.Post with the passed message. CUSP could catch the error and log the message in
a logfile.

msg is the message to display to the user. error is the actual lower-level error that ocurred
that caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower-level error. '

14.4 Usage/Examples

14.4.1 Sample Containee

The folder application is used as an example of a simple application that implements a
particular file type.

-- Constants and global data

folderFileType: NsFile.Type =...;
oldimpl: Containee.Implementation « [];

-- Containee.Implementation procedures

FolderGenericProc: Containee.GenericProc =
< < [atom: Atom.ATOM,
data: Containee.DataHandle,
changeProc: Containee.ChangeProc « niL,
changeProcData: LONG POINTER « NiL]
RETURNS [LONG UNSPECIFIED] > >
BEGIN
SELECT atom FROM
open = > ReTURN [MakeFolder[data, changeProc, changeProcData]];

14-9

14

Containee

14-10

END;

props = > RETURN [MakePropertySheet[data, changeProc, changeProcData]];
canYouTakeSelection = > ReTURN [IF CaniTake[changeProc, changeProcDatal

THEN @true ELSE @false];

takeSelection = > RETURN [IF Take[data, move, changeProc, changeProcData] THEN

@true eLse @false |;

takeSelectionCopy = > RETURN [IF Take[data, copy, changeProc, changeProcData]

THEN @true ELSE @false];

menu = >

BEGIN
run: xstring.ReaderBody « Xstring.FromSTRING ["AltOpen™L];
name: xstring.ReaderBody « xstring.FromSTRING ["Folder”L];
title: MenuData.ltemHandle « MenuData.Createltem|
zone: NiL, name: @name, proc: NiL];
items: ARRAY[0..1) OF MenuData.ltemHandle « [
MenuData.Createltem[zone: NiL, name: @run, proc: AltOpen]];
menu: MenuData.MenuHandle e MenuData.CreateMenu[
zone: NIL, title: title, array: DEscrIPTOR[items]];
RETURN [menu];
END;

freeMenu = >

BEGIN

menu: MenubData.MenuHandle « changeProcData;
MenuData.DestroyMenu [NIL, menu];
RETURN[menu};

END;

ENDCASE = > RETURN [

oldimpl.genericProc [atom, data, changeProc, changeProéDaté] I

AltOpen: MenuData.MenuProc = {...};

CaniTake: PROCEDURE [
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NiL]
RETURNS [yes: BOOLEAN] = {

< < Use Selection.CanYouConvert to see if the current selection can convert to a

file. If so, then return TRUE, else FALSE. > >

}:

MakeFolder: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NIL]
RETURNS [shell: starwindowshell.Handle] = {

< < Create and return a StarWindowsShell containing a list of the files in this folder.

Use FileContainerShell.Create. > >

Y

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc «NiL,
changeProcData: LONG POINTER « NIL]

ViewPoint Programmer’s Manual 14

RETURNS [psheet: starwindowsShell.Handle] = {
< < Create and return a property sheet, using PropertySheet.Create. > >

}

Take: PROCEDURE [

data: Containee.DataHandle,

copyOrMove: Selection.CopyOrMove,

changeProc: Containee.ChangeProc «nit,

changeProcData: LONG POINTER « NIL]

RETURNS [0k: BOOLEAN] = {

< < Convert the current selection to a file using Selection.Convert or
Selection.Enumerate, and copy or move that file into this folder. > >

j#
-- Initialization procedures

InitAtoms: PROCEDURE = {
open « Atom.MakeAtom(["Open"L];
props « atom.MakeAtom["Props"L];
canYouTakeSelection « atom.MakeAtom("CanYouTakeSelection"L];
takeSelection « atom.MakeAtom[" TakeSelection"L];
takeSelectionCopy « Atom.MakeAtom["TakeSelectionCopy"L];
menu « Atom.MakeAtom{["Menu"L];

freeMenu « atom.MakeAtom["FreeMenu"L};

}

Setimplementation: PROCEDURE = {
newimpl: Containee.Implementation « Containee.Getimplementation |
folderFileType];
newimpl.genericProc « FolderGenericProc;
oldimpl & Containee.Setimplementation { folderFileType, newimpl |;

t

-- Mainline code
InitAtoms(];
Setimplementation(];

14.4.2 ChangeProc example

The folder property sheet is used to demonstrate a callback to a ChangeProc.

DataObject: TYPE = RECORD [
fh: NsFile.Handle,
changeProc: Containee.ChangeProc «nit,
changeProcData: LONG POINTER «NiIL];

Data: TYPE = LONG POINTER TO DataObject;

MakePropertySheet: PROCEDURE [
data: Containee.DataHandle,
changeProc: Containee.ChangeProc « i,
changeProcData: LONG POINTER « NiL]

14 11

14 Containee

RETURNS [pSheetShell: starwindowshell.Handle] = {
-- Pass changeProc to Makeltems through clientData.

mydata: Data « zone.NEW[DataObject « [
fh: NSFile.OpenByReference[@data.reference],
changeProc: changeProc,
changeProcData: changeProcData]];

pSheetShell « Propertysheet.Create {
formWindowltems: Makeltems,
menultemProc: MenultemProc,
menultems: [done: TRUE, cancel: TRUE, defaults: TRUE],
title: XMessage.Get [...], '
formWindowltemsLayout: Dolayout,
display: FALSE,
clientData: mydatal;

Y

Makeltems: Formwindow.MakeltemsProc = {
-- Make property sheet items with calls to Formwindow.MakeXXXItem.

b

MenultemProc: PropertySheet. MenuitemProc = {

< < [shell: starwindowshell. Handle, formWindow: window.Handle,
menuitem: PropertySheet. MenultemType, clientData: LONG POINTER]
RETURNS [destroy: BOOLEAN « FALSE] > >

mydata: Data = clientData;

SELECT menultem FROM
done = > ReTURN[destroy: ApplyAnyChanges[formWindow, mydata].ok];
cancel = > ReTURN[destroy: TRUE];
defaults = > ...
ENDCASE;

RETURN[destroy: FALSE];

JH

ApplyAnyChanges: PROC [fw: window.Handle, mydata: Data] RETURNS [ok: BOOLEAN] = {
-- Collect any changes in the property sheet items.
NSFile.ChangeAttributes [mydata.fh, ...];

BEGIN -- Call the changeProc.
data: Containee.Data « [NsFile.GetReference [mydata.fh]];
If mydata.changeProc # NiL THEN

mydata.changeProc[mydata.changeProcData, @data, changedAttributes];
END;

RETURN [ok: TRUE];

Y

L4-12

ViewPoint Programmer’s Manual 14

14.4.3 Error and Signal Usage

This client catches an NsFile.Error and raises Containee.Error, passing along the ERROR and
the NsFile.ErrorRecord:

message: xstring.ReaderBody;

errorRecord: NSFile.ErrorRecord;

signal: --GENERIC-- SIGNAL «—NiL;

file & NSFile.OpenByReference [reference: ... !
NSFile.Error = > {

errorRecord « error;

signal « LOOPHOLE[NSFile.Error, SIGNAL];

GOTO ErrorExit}];

< < Operate on the file.> >

nsrile.Closelfile];

EXITS
ErrorExit = > {

message « xstring.FromSTRING["NsFile.Error"“L};

Containee.Error [msg: @message, error: signal, errorData: @errorRecord];

1413

14

Containee

14.5 Index of Interface Items

14-14

Item

ChangeProc: TYPE

Data: TYPE

DataHandle: Type
DefaultFileConvertProc: selection.ConvertProc
Error:ERROR

GenericProc: TYpe

GetCachedName: PROCEDURE
GetCachedType: PROCEDURE
GetDefaultimplementation: PROCEDURE
Getimplementation: PROCEDURE
ignoreType:NSFile

Implementation: Type
invalidateCache: PROCEDURE
invalidateWholeCache: PROCEDURE
nullData:Data

PictureProc: TYPE

PictureState: TYPE

PictureState: TYPE

ReturnTicket: PROCEDURE
SetCachedName: PROCEDURE
SetCachedType: PROCEDURE
SetDefaultimplementation: PROCEDURE
Setimplementation: PROCEDURE
Signal:siGNAL

SmallPictureProc: TyYpe

Ticket: TYPE

<
)
L)

o©

WBWWONNOOVONOTEWOS HOOOWANNNOOLEONDLE®N

15

ContainerCache

15.1 Overview
The ContainerCache interface provides the writer of a ContainerSource with a cache for

the container’s items. ContainerCache supports storing strings and client data with each
item.

15.2 Interface Items

15.2.1 Cache Allocation and Management
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE;
AllocateCache2: PROCEDURE [useProcessAbort: BOOLEAN « TRUE] RETURNS [Handle];
AllocateCache2 returns a handle on a cache that can be filled with BeginFill. The client
should call ResetCache before calling BeginFill. useProcessAbort indicates whether
Process.Abort should be raised by ContainerCache when the fill process is aborted--for
example, when the cache is destroyed while still filling. It is intended to accommodate
clients that cannot properly handle ABORTED. AllocateCache2 is actually in
ContainerCacheExtra2.mesa.

AllocateCache: PROCEDURE RETURNS [Handle};

AllocateCache returns a handle on a cache that can be filled with BeginFill. The client
should call ResetCache before calling BeginFill.

GetLength: PROCEDURE [cache: Handle] RETURNS [cachelength: cARDINAL];

GetlLength returns the number of items in the cache. GetLength is actually in
ContainerCacheExtra.mesa.

ResetCache: PROCEDURE [Handle];

15

ContainerCache

15-2

ResetCache clears the cache so that, for example, the cache can be refilled by calling
BeginFill.

FreeCache: PROCEDURE [Handle];

Frees the resources used by a cache.

15.2.2 Filling the Cache

The client initially fills a cache with items by calling BeginFill with a FillProc. The FillProc
adds items to the cache by repeatedly calling Appenditem.

FillProc: TYPE = PROCEDURE [cache: Handle]
RETURNS [errored: BOOLEAN « FALSE];

The client provides a FillProc to the BeginFill procedure. The FillProc should fill the cache
by using Appenditem. errored is an indication of whether an error occurred during the
filling of the cache (errored = TRUE).

BeginFill: PROCEDURE [
cache: Handle,
fillProc: FillProc,
clients: LONG POINTER,
fork: BOOLEAN « TRUE |;

Clients: PROCEDURE [cache: Handle]
RETURNS [clients: LONG POINTER];

BeginFill begins filling the cache. fillProc is called to add items to the cache. If fork is TRUE,
then fillProc is forked as a separate process. clients is stored with the cache and may be
retrieved by calling Clients.

CachefFillStatus: TYPe = {no, inProgress, inProgressPendingAbort,
inProgressPendingloin, yes, yesWithError, spare };

StatusOfFill: PROCEDURE [cache: Handle]
RETURNS [CacheFillStatus];

StatusOfFill returns the current status of the cache fill. yes indicates that the fill has
successfully completed; no means the cache has not been filled yet; inProgress indicates
that the fill is running right now. inProgressPendingAbort indicates that an abort has
been received but the fillProc has not yet returned. inProgressPendingJoin, yesWithError,
and spare are not currently used.

15.2.3 Item Operations

ItemHandle: TYPE = LONG POINTER TO ItemObiject;

ItemObject: TYPE;

ViewPoint Programmer’s Manual 15

AddData: TYPE = RECORD[
clientData: LONG POINTER, -- TO ARRAY [0..0) OF WORD
clientDataCount: CARDINAL,
clientStrings: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody]);

An AddData record is passed to the Appenditem, insertitem, and Replaceltem procedures.
clientData should contain any data that the client wants to cache with the item, usually
some type of reference to the actual item. clientDataCount is the size (in words) of the
clientData. clientData is copied into the cache: therefore the clientData should contain no
pointers to other data. clientStrings should contain the strings to be displayed for the item.
clientStrings are also copied into the cache, allowing the client to free them.

The standard use of clientStrings is to implement the ContainerSource.StringOfltemProc,
which can be accessed efficiently by using ItemNthString. (See the section on item content
operations for more details on accessing the contents of items.) Caution: There are
restrictions on the total length of an item (strings plus client data) that may be added to a
cache. Currently, no item should be longer than 512 bytes.

Appenditem: PROCEDURE |
cache: Handle,
addData: AddData]
RETURNS [handle:ltemHandle];

Appendltem appends an item to the end of cache. It is usually called repeatedly from
within a FillProc. handle is a pointer that can be used to access the new item.

DeleteNItems: PROCEDURE [
cache: Handle,
item: CARDINAL,
nitems: CARDINAL «1];

DeleteNitems deletes one or more consecutive items from cache, starting at item. Fine point:
Because the cache is maintained as a contiguous string of bits, this operation is likely to be slow compared to
Appenditem and GetNthitem.

GetNthitem: PROCEDURE [cache: Handle, n: CARDINAL]
RETURNS [ItemHandle];

GetNthitem returns the nth item in cache. The items are numbered from zero. [t returns
NiL if no such item exists. The ItemHandle returned is not guaranteed to be valid after any
operation that modifies the cache (DeleteNitems, Insertitem, Replaceltem). If the cache
status is inProgress (if someone is in the process of filling the cache), GetNthitem does not
return until the nth item has been appended to the cache or until the fill is complete.

15

ContainerCache

15-4

Insertitem: PROCEDURE |
cache: Handle,
before: CARDINAL,
addData: AddData]
ReTURNS [handle: ItemHandle];

Insertitem inserts an item in cache. The new item is inserted before the item before. Note
that all the items after this item will be renumbered. Fine point: Because the cache is maintained
as a contiguous string of bits, this operation is likely to be slow compared to Appenditem and GetNthitem.

Replaceltem: PROCEDURE [
cache: Handle,
item: CARDINAL,
addData: AddData]
RETURNS [handle: ItemHandle];

Replacettem replaces the contents of item in cache with the information in addData. Fine
point: This operation is implemented as DeleteNitems toilowed by Insertitem, and so is likely to be slow compared
to Appenditem and GetNthitem.

15.2.4 Item Content Operations

Itemindex: PROCEDURE [item: ItemHandle] RETURNS [index: CARDINAL];
Given the handle item, ItemIndex returns its index in the cache.
ItemClients: PROCEDURE [item: ItemHandle] RETURNS [clientData: LONG POINTER];

Returns the client data associated with item. If the client data passed in was NIL,
clientData is NiL.

itemClientsLength: PROCEDURE [item: ItemHandle] RETURNS [dataLength: CARDINAL];
Returns the length of the client data passed in with item.

ItemStringCount: PROCEDURE [item: ItemHandle] RETURNS [strings: CARDINAL];

Returns the number of client strings associated with item.

ItemNthString: PROCEDURE [item: ItemHandle, n: CARDINAL] RETURNS [Xstring.ReaderBody];

Returns the nth client string associated with item. This operation can be used to
implement a ContainerSource.StringOfltemProc .

15.2.5 Marking Items in the Cache

Whenever items are deleted or inserted in a ContainerCache, all the items are
renumbered. This allows a client to keep track of items by marking them. ContainerCache
keeps track of the marked items across any changes to the cache. A mark is a handle on a
cache item that tracks the item when the item number changes. This facility is handy for

ViewPoint Programmer’s Manual 1 5

container source implementations that use ContainerCache and want to perform all the
various combinations of moving and copying items within the source.

Mark: TYPE =.LONG POINTER TO MarkObject;
MarkObject: TYPE;

SetMark: PROCEDURE [
cache: ContainerCache.Handle, index: CARDINAL]
RETURNS [mark: Mark];
-- seta mark at index

IndexFromMark: PROCEDURE [mark: Mark]
RETURNS [index: CARDINAL};
-- get the current value of this mark

MoveMark: PROCEDURE [mark: Mark, newlndex: CARDINAL];
-- allows the resetting of a mark without using a new one

FreeMark: PROCEDURE [mark: Mark];
-- mark no longer needed

15.3 Usage/Examples

After the client allocates a cache, the client starts filling the cache by calling BeginFill
with a FillProc. BeginFill immediately calls the FillProc. Inside the FillProc, the client
usually does some kind of enumeration on the source backing (for example, if the source is
backed by files, the client does an NsFile.List). For each item enumerated by the FillProc, the
client builds the required strings for that item and then passes the strings along with any
item data to Appenditem. The item data is usually some information that is needed to
identify the item uniquely (for the file example, this might be a file ID). This process
continues until all the items in the source have been enumerated, at which time the
FlllProc returns.

The call to BeginFill may indicate that the FillProc should be forked into a separate process.
This allows the enumeration of the source’s items to go on in the background, which is an
advantage if the source has a large number of items. If the source is being displayed in a
ContainerWindow while this background fill is taking place, the window displays each
new item as it is appended to the cache. Fine point: ContainerWindow can display the items as they
are added because GetNthitem will wait during the filling of the cache until the requested item is in the cache
instead of returning with an indication that the requested item is not available.

Once the cache has been created, operations on the container source that owns the cache
may cause items in the cache to become invalid. One way to bring the cache back into
synch is to invoke BeginFill and rebuild the cache. If reenumerating the items in the
source is expensive, items in the cache can be updated with the operations DeleteNitems,
insertitem, and Replaceltem. The disadvantage of these operations is that they may cause
performance degradation. Fine Point: The current implementation tries to maintain the cache as a
contiguous series of strings of bits to mininize swapping. Using these operations may move large amounts of duta

around or fragment the cache data. Ifa large number of changes are to be made, it may pay to rebuild the cache.

15-5

15

ContainerCache

15-6

Use of ContainerCache may not always be appropriate. In some cases, the structure of
items in a source may be simple enough that a simple data structure may suffice to hold
all the information necessary to respond to source operations.

15.3.1 Example of ContainerCache Use

The following example is taken from the implementation of FileContainerSource. It gives
an example FillProc that uses Appenditem to build the cache.

ReaderSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF XString.ReaderBody|:
ReaderSeqPtr: TYPE = LONG POINTER TO ReaderSeq; »

WriterSeq: TYPE = RECORD [SEQUENCE length: CARDINAL OF xstring.WriterBody);
WriterSeqPtr: TYPE = LONG POINTER TO WriterSeq;

FiliCachelnBackground: ContainerCache.FillProc =
< < [cache: Handle] RETURNS [errored: BOOLEAN « FALSE]> >
BEGIN
fs: FS e Containercache.Clients[cache]; -- get container source contex
parentHandle: nSrile.Handle; :
writers: WriterSegPtr « AllocateWriters [fs.columns.length];
readers: ReaderSegPtr « z.NEW [ReaderSeq(fs.columns.length]];

Enumerator: NsFile. AttributesProc =
BEGIN
itemData: ItemFileData;
addData: ContainerCache.AddData;

addData « BuildRow [fs, writers, readers, @itemData, attributes];
[] « ContainerCache.Appenditem [cache, addDatal;

RETURN;

END;

BEGIN
parentHandle « NsFile.OpenByReference [fs.parentReference];
Process.SetPriority [Process.priorityBackground];
NSFile.List [directory: parentHandle, proc: Enumerator,
selections: fs.selections, scope: fs.scope |;
NsFile.Close [parentHandle];
END;
2.FREE [@readers];
FreeWriters [writers];

RETURN;
END;

BuildRow: PROCEDURE [
fs: FS,
writers: LONG POINTER TO WriterSeq,
readers: LONG POINTER TO ReaderSeq,
itemData: ItemFileDataHandle,
attributes: NSFile.Attributes}

ViewPoint Programmer’s Manual 1 5

RETURNS [addData: ContainerCache.AddData] =
BEGIN

attr: Nsrile.Attribute;

Ci: Containee.Implementation;

Ci & Containee.Getimplementation [attributes.type];
FOR i: CARDINAL IN [0..fs.columns.length) o

xstring.ClearWriter [@writers([i]];

-- Decide the type of column we have (passed in as Column info to
FileContainerSource.Create) and call proper format proc to format attribute(s)
into a string --

WITH column: fs.columns(i] SELECT FROM

attribute = > {
attr « AttributeFromAttributeRecord [
attributes, column.attr];
.column.formatProc [ci, attr, @writers[i]]; };
extendedAttribute = > {
attr « ExtendedAttributeFromAttributeRecord [
attributes, column.extendedAttr};
column.formatProc [ci, attr, @writers[i]l;};
multipleAttributes = >
column.formatProc [ci, attributes, @writers[il];
ENDCASE;
ENDLOOP;

itemData 1 « [id: attributes.filelD, type: attributes.type];

FOR i: CARDINALIN [0..writers.length) Do
readers{i] « (xstring.ReaderFromWriter [@writers[i]]) 1;
ENDLOOP;

addData & [
clientData: itemData,
clientDataCount: size{ltemFileData],
clientStrings: DeEscrIPTOR[readers]];

RETURN[addData];
END;

15

ContainerCache

15.4 Index of Interface Items

15-8

Item

AddData: TYPE
AllocateCache2: PROCEDURE
AllocateCache: PROCEDURE
Appenditem: PROCEDURE
BeginFill: PROCEDURE
CachefFillStatus: TYPE
Clients: PROCEDURE
DeleteNltems: PROCEDURE
FillProc: TYPE

FreeCache: PROCEDURE
FreeMark :PROCEDURE
Getlength: PROCEDURE
GetNthltem: PROCEDURE
Handle: TYPE
IndexFromMark:PROCEDURE
Insertitem: PROCEDURE
itemClients: PROCEDURE

ItemClientsLength: PROCEDURE

[temHandle: Tyre
Itemindex: PROCEDURE
ItemNthString: PROCEDURE
ItemObject: TYpPE
ItemStringCount: PROCEDURE
Mark:Type
MarkObject: Type
MoveMark:Procedure
Object: TYPE
Replaceltem: PROCEDURE
ResetCache: PROCEDURE
SetMark:PROCEDURE
StatusOfFill: PROCEDURE

Page

NUI—'-h—‘UImU'ththhhku‘l-ﬂw.‘mNNwN“Nwd_‘w

16

= ContainerSource

16.1 Overview

The Container interfaces (ContainerSource, ContainerWindow, FileContainerSource,
FileContainerShell, and ContainerCache) provide the services needed to implement an
application that appears as an ordered list of items to be manipulated by the user.
ViewPoint Folders are a typical example of such an application. ContainerWindow
provides the user interface for containers. It displays each item as a list of strings and
handles selection highlighting, scrolling, and so forth. When a ContainerWindow is
created, a record of procedures is passed in. ContainerWindow obtains the strings of each
item by calling one of these procedures. ContainerWindow also performs user operations
“on items--such as open, props, delete, insert, take the current selection, and selection
conversion by calling other procedures in the record. This record of procedures and their
implementation is called a container source. A container source can be thought of as a
supply (source) of items for a ContainerWindow. A container source is responsible for
implementing container source operations on its underlying representation of the items in
the source.

The ContainerSource interface contains the procedure TYPes that make up the record of
procedures a container source must implement. These procedure definitions encompass all
the operations that a source of items must be able to perform. ContainerSource also
provides a place to save data specific to a particular container source.

The procedure Types defined by ContainerSource fall into two categories. ActOnProc,
CanYouTakeProc, GetLengthProc, and TakeProc are operations on the source as a whole.
ConvertltemProc, DeleteltemsProc, ItemGenericProc, and StringOfltemProc are
operations on the individual items within the source.

Note that the items in a container must exhibit behavior similar to the behavior defined
by the Containee interface, such as open, props, take selection, convert. However, also
note that the Containee interface defines the behavior of NSFiles, whereas
ContainerSource is totally independent of NSFile. The items in a container may be backed
by anything. The FileContainerSource interface is an example of a container source that is
backed by NSFiles. The ViewPoint Directory application contains examples of container
sources that are backed by Clearinghouse entries (such as the Filing and Printing
dividers) and by simple strings in virtual memory (such as a domain divider).

16-1

16

ContainerSource

The ContainerCache interface provides a mechanism for caching the strings and item-
specific data for the items in a container source. The implementor of a container source
may find ContainerCache to be handy.

16.2 Interface Items

16-2

16.2.1 Handle, Procedures, and ProceduresObject

Handle: TYPE = LONG POINTER TO Procedures;
Procedures: TYPE = LONG POINTER TO ProceduresObject;

ProceduresObject: TYPE = RECORD [
acton: ActOnProc,
canYouTake: CanYouTakeProc,
columnCount: ColumnCountProc,
convertitem: ConvertitemProc,
deleteltems: DeleteltemsProc,
getLength: GetLengthProc,
itemGeneric: ltemGenericProc,
stringOfitem: StringOfitemProc,
take: TakeProc];

Handle identifies a particular container source. Handle is a pointer to a pointer
(Procedures) to a record of procedures (ProceduresObject) that the container source
implements. A container source typically EXPORTs a Create procedure that returns a
Handle. This Handle is then passed to Containerwindow.Create. Whenever
ContainerWindow needs the container source to do something, it calls the appropriate
procedure in the ProceduresObject by using Handle T 1 and passing in the Handle. Note:
Every procedure in the ProceduresObject takes a Handle as its first parameter. Fine Point:
Actually, ContainerWindow calls the INLINE procedures described in the INLINE section, which in turn call the
procedures in the ProceduresObject.

Handle is a pointer to a pointer (rather than just a pointer to the ProceduresObject) to
allow a container source to save data specific to the source. For example, a file-backed
source needs to keep a pointer to the file. See the section on Usage/Examples for an
explanation of how this is done.

16.2.2 Procedures That Operate on Individual Items

Itemindex: TYPE = CARDINAL;
nullitem: Itemindex = itemindex.LAST;

All the procedures that operate on individual items take a Handle and an Itemindex. An
Itemindex is simply a CARDINAL that uniquely identifies an item in the source. Note: A
container source is an ordered list of items. An Itemindex of “n” indicates the “nth” item in
the source. An Itemindex of zero corresponds to the first source item. An Itemindex should
be thought of as a loose binding: the index of a particular item may change as a result of

A~

ViewPoint Programmer’s Manual 16

changes to the source. For example, if an item is deleted, all the items below it are
renumbered. nullltem is a constant used to represent no item or unknown item.

StringOfltemProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
stringindex: CARDINAL]
RETURNS [xstring.ReaderBody];

The source’s StringOfltemProc should return the string stringlndex of item itemindex in
source. Each item’s display is composed of strings, one for each column of the container
window. For example, an open Folder shows four columns: the icon picture, the name, the
size, and the date. stringlndex will be IN [0..source.columnCount[]) (see also
ColumnCountProc in the next section). If there is no such item (if itemindex is greater
than the number of items in the source, for example), StringOfitemProc should raise
Error[noSuchitem]. StringOfltemProc is used extensively, and its implementation should
be efficient.

ItemGenericProc: TYPE = PROCEDURE |
source: Handle,
itemindex: Itemindex,
atom: Atom.ATOM,
changeProc: ChangeProc «Nit,
changeProcData: LONG POINTER «NiL]
RETURNS [LONG UNSPECIFIED];

The source’s temGenericProc is invoked to perform an operation on one of the items in the
container. itemindex indicates which item to operate on. The operation is specified by
atom. Some of the typical atoms are: Open, Props, CanYouTakeSelection, TakeSelection,
TakeSelectionCopy. This procedure is just like the genericProc that a
Containee.Implementation must provide. (See the Containee interface for a complete
description of the atoms and their return values.) changeProc must be called if the
ItemGenericProc causes the source to change. changeProc and changeProcData are
described in more detail below in the section on changeProc types.

ConvertitemProc: TYPE = PROCEDURE [
source: Handle,
itemindex: ltemindex,
n: CARDINAL « 1,
target: selection.Target,
zone: UNCOUNTED ZONE,
info: selection.Conversioninfo « [convert[]],
changeProc: ChangeProc «Nit,
changeProcData: LONG POINTER « NIL]
RETURNS [value: Selection.Value];

The source’s ConvertltemProc is invoked to convert one or more of the items in source,
just as if the item was the current selection and Selection.Convert had been called.
itemindex indicates the first item to convert. n indicates how many consecutive items to
convert. target, zone, info, and value are all identical to the parameters for
selection.ConvertProc (see the Selection interface). If n>1, then info is the enumeration
variant; otherwise, it is the convert variant. changeProc must be called if the

16-3

16

ContainerSource

16-4

ConvertltemProc causes the source to change--for example, when an item is moved out of
the source. changeProc and changeProcData are described in more detail in the section on
changeProc types.

DeleteltemsProc: TYPE = PROCEDURE [
source: Handle,
itemindex: Itemindex,
n: CARDINAL &« 1,
changeProc: Change®Proc «NiL,
changeProcData: LONG POINTER «NiL];

The source’s DeleteltemsProc is invoked to delete consecutive items from source.
itemindex is the first item to delete. n is the number of items to delete. changeProc must
be called if the DeleteltemsProc causes the source to change, that is, if the deletion is
successful. changeProc and changeProcData are described in more detail in the section on
changeProc types.

16.2.3 Procedures That Operate on the Entire Source

ColumnCountProc: TYPE = PROCEDURE [source: Handle] RETURNS [columns: CARDINAL];

The source’s ColumnCountProc should return the number of columns in source, that is,
the number of strings in each item. Fine point: typically. the number of columns is the same as COUNT
[ContainerWindow.ColumnHeaders].

GetlengthProc: TYPE = PROCEDURE [source: Handle]
RETURNS [length: CARDINAL, totalOrPartial: TotalOrPartial « total];

TotalOrPartial: TYPe = {total, partial};

The source’s GetLengthProc should return the total number of items currently in the
source. This operation is performed often and should be efficient. Some container sources
have indeterminate length until after an initial enumeration has completed (for example,
clearinghouse enumerations). These sources may return {totalOrPartial: partial] while the
initial enumeration is in progress. This lets the ContainerWindow display mechanism
know that there are more items coming, while giving it some information along the way.
Once a source knows how many items are in the source (or for those sources that know
right from the start how many items are in the source (such as NSFile-backed sources), the
GetLengthProc should return [totalOrPartial: total].)

ActOnProc: TYPE = PROCEDURE [source: Handle, action: Action];
Action: Type = {destroy, reList, sleep, wakeup};

The source’s ActOnProc is invoked to request some action of the source. Action indicates
what the source should or can do.

destroy The term destroy means that the source should destroy itself, freeing
all storage and releasing all resources associated with the container
source instance.

ViewPoint Programmer’s Manual 16

sleep The term sleep means that the source should release whatever
resources it can without losing information; it is a hint that the
container source will not be used for awhile.

wakeup The term wakeup means that the source is going to be used and should
resume its normal state, undoing whatever was done for sleep.

reList The term reList means that the source should reenumerate itself
hecause its backing store has been changed.

CanYouTakeProc: TYPE = PROCEDURE [
source: Handle,
selection: selection.ConvertProc « NiL]
RETURNS [yes: BOOLEAN];

The source’s CanYouTakeProc is invoked to determine if the container source can take the
selection. If selection is NiL, the current selection should be used (call Selection.Convert).
Otherwise the Selection.ConvertProc is used to obtain an arbitrary selection. If the
CanYouTakeProc returns yes = TRUE, then the source’s TakeProc may be called. Fine point:
The Selection interface does not support passing in an arbitrary ConvertProc. It is the responsibilty of clients
that pass in arbitrary selections to make sure the source can properly handle this case. This routine is
intended to provide an efficient check on the compatibility of the objects being copied or
moved. The common use of this routine is to provide feedback to the user. If a
CanYouTakeProc returns TRUE, the client may choose to highlight the target. This is
normally at the level of a file-type check. More elaborate checking is not necessary; for
example, a file-backed container source would not check the source for protection or
uniqueness violations. These should be handled by the TakeProc.

TakeProc: TYPE = PROCEDURE [
source: Handle,
copyOrMove: selection.CopyOrMove,
afterHint: Itemindex « nullitem,
withinSameSource: BOOLEAN ¢ FALSE,
changeProc: ChangeProc «NiL,
changeProcData: LONG POINTER «NiL,
selection: selection.ConvertProc «NiL]
RETURNS [0k: BOOLEAN];

beforeltemZero: Itemindex = Itemindex.LAST - 1;

The source’s TakeProc is invoked to add items to the container source. copyOrMove tells
the source whether to do a move or a copy of the selection. afterHint indicates the item the
new item should be inserted after. Fine point: This is only a hint to the container source, because the
ultimate position of the new item may depend on a sort order built in to the source. afterHint defaults to
nullitem, which indicates that the caller doesn’t care where the new item goes. If afterHint
= beforeitemZero, the source should insert the new item before the first item.
changeProc must be called if the TakeProc causes the source to change.
withinSameSource = TRUE indicates to the source that the item(s) being moved or copied
into the source are also in that same source--such as when the user moves or copies
something from one place in a container to another place in the same container. This case
usually involves some special case processing by the source (especially for move).
changeProc and changeProcData are described in more detail in the next section.

16-5

16

ContainerSource

16-6

selection indicates the objects to be moved or copied. If selection is NIL, the current
selection should be used (call selection.Convert.) Otherwise the selection.ConvertProc is used
to obtain an arbitrary selection. Fine point: Refer to the CanYouTakeProc description for further
discussion of arbitrary selections. OK indicates whether the TakeProc was successful or not. This
routine is usually preceded by a call to the source’s CanYouTakeProc.

16.2.4 ChangeProc Types

A source’s ConvertProc, DeleteltemsProc, ItemGenericProc, and TakeProc all take a
ChangeProc as an input parameter. This ChangeProc must be called by the source
whenever any item or items in the source changes. This allows the ContainerWindow
display code to keep the display up to date with the source. For example, a call to the
source’s ltemGenericProc with an atom of Props causes a property sheet to be displayed for
an item. If the user then edits, for example, the name of the item, and closes the property
sheet, the source must detect this change, update its backing, and call the ChangeProc
that was passed into the ItemGenericProc. This ChangeProc (supplied by
ContainerWindow) then causes the changed item(s) to be redisplayed.

ChangeProc: TYPE = PROCEDURE [
changeProcData: LONG POINTER,
changelnfo: Changeinfo];

A ChangeProc and changeProcData are passed to a source’s ConvertProc,
DeleteltemsProc, ItemGenericProc, and TakeProc. Because the changeProcData had to be
allocated from someplace, the changeProc must always be called, even if there were no
changes to the source. The source must call the ChangeProc with the changeProcData and
any changeinfo.

Changelinfo: TYPE = RECORD {
var: SeELeCT changeType: ChangeType FROM
replace = > [item: [temindex],
insert = > [insertinfo: LONG DESCRIPTOR FOR ARRAY OF Editinfo],
delete = > [deletelnfo: Editinfo],
all, noChanges = > nuLL,
ENDCASE |;

ChangeType: TYpPe = { replace, insert, delete, all, noChanges};

Changeinfo is passed to the ChangeProc to tell the display code exactly what changed. A
container source can be smart and pass specific Changeinfo (for example, “3 items were
inserted after item 4 and 2 items were inserted after item 6” may be constructed with the
insert variant) or be dumb and simply pass the all variant, which causes a total repaint of
the container display. replace indicates that a single item has changed. insert indicates
that one or more items have been inserted. delete indicates that one or more items have
been deleted. all indicates that the entire source has been changed.

)

ViewPoint Programmer’s Manual].6

EditInfo: TYPE = RECORD [
afteritem: Itemindex,
nitems: CARDINAL];

Editinfo is used with the insert and delete variants of Changelnfo to indicate how many
items have been inserted or deleted and where they were inserted at or deleted from.

16.2.5 Errors

A container source may raise Error or Signal as appropriate.

Error: ERROR [code: ErrorCode, msg: XString.Reader « NiL,
error: ERROR & NiL, errorData: LONG POINTER TO UNSPECIFIED & NIL];

Signal: SIGNAL [code: ErrorCode, msg: XString.Reader «NiL,
error: ERROR « NiL, errorData: LONG POINTER TO UNSPECIFIED & NIL];

A source's ItemGenericProc (and ConvertitemProc and DeleteltemsProc) should never
assume that it has been called by a ContainerWindow and therefore should never call
such facilities as Attention.Post or UserTerminal.BlinkDisplay. (The application might be
called by CUSP, for example.) Rather, the source should raise ContainerSource.Error or
Signal with an appropriate message. The caller of the source's ItemGenericProc should
catch these errors and do the appropriate thing. In the typical case, the ContainerWindow
calls the source’s ItemGenericProc, catches the error, and calls Attention.Post with the
passed message. CUSP could catch the error and log the message in a log file. msg is the
message to display to the user. error is the actual lower-level error that occurred that
caused Error or Signal to be raised. errorData points to any additional data that
accompanied the lower level error.

ErrorCode: TYPE = MACHINE DEPENDENT {invalidParameters(0), accessError, fileError,
noSuchitem, other, last(15)};

invalidParameters indicates that some parameters were invalid: for example, the
source was not the correct type (the Procedures did not match).

accessError . indicates an attempt to perform an operation that violates the
created access option (for sources that implement access
controls). '

fileError indicates a file system error (for sources that are backed by
files).

noSuchitem A container source implementation should raise

Error[noSuchltem] if one of the container source's procedures is
called with an Itemindex for an item that is not in the source.

other may be raised to indicate any other problem.

Fine point: Error and Signal are EXPORTed by the FileContainerSource implementation because ContainerSource

has no implementation.

16-7

16 ContainerSource

16.2.6 INLINES

The following INLINE procedures are provided as a convenience to clients that wish to use
object notation when calling a container source. ContainerWindow is the only typical
client of these procedures.

ActOn: ActOnProc = INLINE {...};

CanYouTake: CanYouTakeProc = INLINE {...};
ColumnCount: ColumnCountProc = INUNE {...};
Convertitem: ConvertltemProc = INLINE {...};
Deleteltems: DeleteitemsProc = INLINE {...};
GetLength: GetLengthProc = INUINE {...};
ItemGeneric: IltemGenericProc = INUNE {...};
StringOfltem: StringOfitemProc = INLINE {...};
Take: TakeProc = INLINE {...};

16.3 Usage/Examples

The reason that Handle is a pointer to a pointer (rather than just a pointer to the
ProceduresObject) is to allow a container source to save data specific to the source. For
example, a file-backed source needs to keep a pointer to the file. This is done in the
following example.

16.3.1 ContainerSource Example

1. Declare a ContainerSource.ProceduresObject in the global frame of the module and fill it
with the appropriate procedures.

mySourceProcs: ContainerSource.ProceduresObject « |
actOn: MyActOn,
canYouTake: CaniTake,
columnCount: MyColumnCount,
convertitem: ConvertMyltem,
deleteltems: DeleteMyltems,
getLength: GetMyLength,
itemGeneric: MyltemGeneric,
stringOfltem: StringOfMyltem,
take: MyTake];

2. Declare a record that has a ContainerSource.Procedures (Procedures, not
ProceduresObject!) as its first field and initialize this field to point to the
ProceduresObject declared in the global frame. The rest of the record should contain
whatever data the source nceds to perform all the operations it will be requested to
perform. Also declare a pointer to this record.

MySource: TYPE = LONG POINTER TO MySourceObject;
MySourceQbject: TYPE = RECORD [

procs: ContainerSource.Procedures « @mySourceProcs,
otherStuff:...];

16-8

ViewPoint Programmer’s Manual 16

3. When creating the source, allocate the MySourceObject record and fill it with any
relevant data. Return a pointer to the Procedures field of the record (@ms.procs
below). Note: This return value is a pointer to a ContainerSource.Procedures, which is a
ContainerSource.Handle.

Create: PUBLIC PROCEDURE [otherStuff: . ..] RETURNS [source: ContainerSource.Handle] = {
ms: MySource « z.New [MySourceObject [otherStuff: otherStuff]];
RETURN[@ms.procs];

¥

4. Every procedure in the ProceduresObject should first LOOPHOLE the
ContainerSource.Handle that was passed in into a pointer (MySource) to the source’s data
record (MySourceObject). After the LOOPHOLE, the fields of the source’s data record,
such as ms.otherStuff, can be directly accessed. This works because the first field in
the source’s data record is a Procedures. Note that the LOOPHOLE is performed in a
procedure that also checks to be sure that the Procedures field of the passed source
points to this source’s procedures (IF source T # @mySourceProcs THEN).

ActOnFile: ContainerSource. ActOnProc = {
ms: MySource = ValidMySource[source];

... ms.otherStuff. ..
)5

ValidMySource: PROCEDURE [sOurce: ContainerSource.Handle] RETURNS [ms: MySource] = {
IFsource = NIL THEN ContainerSource.Error [invalidParameters] ;

IFsource T # @mySourceProcs THEN ContainerSource.Error(invalidParameters];

&

16.3.2 Errors and Signals

For example, this client catches an NSFile.Error and raises Containee.Error, passing along the
ERROR and the NSFile.ErrorRecord:

message: Xstring.ReaderBody;
errorRecord: NSFile.ErrorRecord;
signal: --GENERIC-- SIGNAL «NiL;
file «~NsFile.OpenByReference [reference: ...!
NSFile.Error = > {
errorRecord & error;
signal «LOOPHOLE[NSFile.Error, SIGNAL];
GOTO ErrorExit}];
-- Operate on the file.--
Nskile.Close[file];
EXITS
Errorexit = > {
message « xstring.FromSTRING["NsFite.Error”L];
ContainerSource.Error |
code: fileError, msg: @message, error: signal, errorData: @errorRecord];

16-9

16

ContainerSource

16.4 Index of Interface Items

16-10

Item

Action: TYPE

ActOn: ActOnProc

ActOnProc: TYPE
beforeitemZero: Itemindex
CanYouTake: CanYouTakeProc
CanYouTakeProc: TYPE
Changeinfo: TYpe

ChangeProc: TYPE
ChangeType: TYPE
ColumnCount: ColumnCountProc
ColumnCountProc: Type
Convertltem: ConvertitemProc
ConvertltemProc: TYPE
Deleteltems: DeleteltemsProc
DeleteltemsProc: TYpe
Editinfo: TYPE

Error: ERROR

ErrorCode: TYPE

GetLength: GetLengthProc
GetlLengthProc: TYPe

Handle: TYPE

ItemGeneric: ItemGenericProc
ItemGenericProc: TYPE
Itemindex: TYPE

nullitem: Itemindex
Procedures: TYPE
ProceduresObject: TYPE
Signal: siGNAL

StringOfitem: StringOfitemProc
StringOfltemProc: TYPE

Take: TakeProc

TakeProc: TYPE
TotalOrPartial:Type

"
&
@
®

AUV WONNNNNWONLRGONNNDOWORMROIAAOANONLHONH

17

[

=—— ContainerWindow

17.1 Overview

The ContainerWindow interface supports the creation of ViewPoint-like container
windows. A container window provides a user interface that operates on a list of objects
that are displayed in rows. Each container window has one or more columns: all rows
display the same number of columns.

The ContainerWindow implementation maintains the display and manages user-invoked
actions such as scrolling, selection, notifications, open within, show next/previous, and so
forth. ContainerWindow takes a body window, a ContainerSource, and a specification of
the columns and makes the window behave like a container. Note: This interface does not
depend on NSFile: the objects represented by rows in the container do not have to be backed
by NSFiles.

17.2 Interface Items

17.2.1 Create and Destroy a ContainerWindow

Create: PROCEDURE |
window: window.Handle,
source: ContainerSource. Handle,
columnHeaders: ColumnHeaders,
firstltem: ContainerSource.ltemindex « 0]
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle];

CreateX: PROCEDURE [
window: window.Handle,
source: ContainerSource.Handle,
columnHeaders: ColumnHeaders,
firstltem: ContainerSource.ltemindex « 0,
access: Access « fullAccess]
RETURNS [regularMenultems, topPusheeMenultems: MenuData.ArrayHandle];

ColumnHeaders: TYPE = LONG DESCRIPTOR FOR ARRAY OF ColumnHeaderinfo;

17

ContainerWindow

17-2

ColumnHeaderinfo: TYPE = RECORD [
width: CARDINAL,
wrap: BOOLEAN,
heading: xstring.ReaderBody];

Access: TYPE = PACKED ARRAY AccessType oF BooleanFalseDefault;
BooleanFalseDefault: TYPE = BOOLEAN «FALSE;

AccessType: Type = {open, dropOn, convert, add, delete, props};

fullAccess: Access = ALL [TRUE];

readOnlyAccess: Access = [open: TRUE, convert: TRUE, props: TRUE];
dividerAccess: Access = [open: TRUE, dropOn: TRUE, convert: TRUE, props: TRUE];

Create turns an ordinary window into a container window. window must be a
StarWindowShell body window. source supplies a source of items to be displayed and
manipulated (see the ContainerSource and FileContainerSource interfaces).

CreateX is just like Create, but with the additional access parameter. ContainerWindow
displays an appropriate message if the user tries to do something for which proper access
is not provided. CreateX is defined in ContainerWindowExtra3.mesa.

columnHeaders describes the column widths and supplies column headings. The columns
are displayed in the order given by this array. For each column, width is the number of
bits the column should take, and heading is a string that is displayed at the top of the
column. wrap indicates what to do when a string that the container window wants to
display is wider than width. If wrap = TRUE, the string should be wrapped around;
otherwise, it will be truncated. Fine point: columnHeaders is copied by Create, so this structure may be in
the client’s local frame.

firstitem indicates the item that should be displayed first when the container window is

initially displayed.

regularMenultems and topPusheeMenuitems are the menu items that the container
window needs to have in the StarWindowShell. They should be added (by the client) to the
menu that is installed in the StarWindowShell that this container window is a part of
(these contain menu items such as Show Next and Show Previous).

Destroy: PROCEDURE [window: window.Handle];

Destroys the data associated with the container window. Does not destroy the window
itself. May raise Error [notAContainerWindow].

17.2.2 Item Operations

The individual containees in a container window are referred to as items (from
ContainerSource.Itemindex) They are sequentially numbered starting with zero.

-~

ViewPoint Programmer’s Manual 17

DeleteAndShowNextPrevious: PROCEDURE [
window: window.Handle,
item: ContainerSource.ltemindex,
direction: Direction « next];

DeleteAndShowNextPrevious: PROCEDURE |
window: window.Handle,
item: ContainerSource.ltemindex,
direction: Direction « next]
RETURNS [newOpenShell: starwindowshell.Handle];

Direction: TYpPe = {next, previous};

DeleteAndShowNextPrevious deletes item from the container source and the display, and
then displays the next or previous item. When this procedure is called, the container
window shell is expected to be on top. In particular, the shell of the item named in the
item parameter should have been destroyed. If this item is opened within the container
window, the client should call starwindowShell.Pop until the shell returned from that call is
equal to the container window shell. The second DeleteAndShowNextPrevious is defined
in ContainerWindowExtra2.mesa. It is identical to the first one but also returns the shell
just opened. May raise Error[notAContainerWindow] or Error[noSuchitem].

GetOpenitem: PROCEDURE [window: window.Handle]
RETURNS [item: ContainerSource.ltemindex « ContainerSource.nullltem];

Returns the item that is currently open within the container. If no item is open, it returns
ContainerSource.nullitem . May raise ErrorfnotAContainerWindow].

GetSelection: PROCEDURE [window: window.Handle]
RETURNS [first, lastPlusOne: ContainerSource.ltemindex];

Returns the items currently selected in the ContainerWindow. first = last =
ContainerSource.nullitem means there is no selection.

Selectltem: PROCEDURE [window: window.Handle,
item: ContainerSource.itemindex];

Selects the specified item and implicitly calls MakeltemVisible. MakeltemVisible is in a
friends-level interface. Note: MakeltemVisible forces item to be visible in window. If there
is more than a screenful of items left following item, it is put at the top of the window. If

less than a screenful remains, item is put at the bottom of the window with as many items
as will fit before it. May raise Error[notAContainerWindow] or Error[noSuchitem].

17.2.3 Operations on a ContainerWindow
Isit: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];
Returns TRUE if the window passed in is a ContainerWindow.

GetSource: PROCEDURE [window: window.Handle]
RETURNS [sOurce: ContainerSource.Handle];

17

ContainerWindow

Returns the ContainerSource associated with this window. May raise
Error[notAContainerWindowl]. SetSource allows the client to change the source and the
SourceModifyProc allows the client to modify the source.

SetSource: PROCEDURE [
window: window.Handle, newSource: ContainerSource.Handle]
RETURNS [oldSource: Handle];

SourceModifyProc: TYPE = PROCEDURE [
window: window.Handle, source: ContainerSource.Handle]
RETURNS [changelnfo: Changeinfo];

ModifySource: PROCEDURE [window: window.Handle, proc: SourceModifyProc];
ModifySource calls the source modification proc from within its monitor.

Update: PROCEDURE [window: window.Handle];

Called when the correspondence between the source and the display is invalid. [tems in
the display are redisplayed to reflect any changes in the source. May raise
Error[notAContainerWindow]. Fine point: Clients do not normally need to call this routine unless they

manipulate the source directly. All user-initiated operations on a ContainerWindow cause the display to be

updated automatically.

17.2.4 Errors

Error: ERROR [code: ErrorCode];
ErrorCode: TYPE = MACHINE DEPENDENT {notAContainerWindow(0), noSuchitem, last(7)};

Any operations that operate on a container window may raise this error.
notAContainerWindow is raised if the window passed in is not a container window (that
is, was not passed to Create). noSuchitem may be raised if an operation specifies a non-
existent item.

17.3 Usage/Examples

The following example is taken from the implementation of the FileContainerShell
interface. It illustrates the steps involved in creating a container window: creating a
container source, creating a StarWindowShell, creating a body window inside the shell,
creating the container window, and finally merging the menu items returned by
ContainerWindow.Create with its own menu commands and installing those commands in
the shell. It also gives a sample StarWindowsShell transition procedure that destroys the
container source and the container window.

-- From FileContainerShellimpl.mesa

MenultemSeq: TYPE = RECORD |
SEQUENCE length: CARDINAL OF MenuData.ltemHandle];

Create: PUBLIC PROCEDURE |
file: NsFile.Reference,

-~

ViewPoint Programmer’s Manual

17

columnHeaders: Containerwindow.ColumnHeaders,

columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle « N,
scope: NSFile.Scope « [,

position: ContainerSource.ltemindex « 0,

options: FileContainerSource.Options « []]

RETURNS [shell: starwindowshell.Handle] =

BEGIN

body: window.Handle « niL;

source: ContainerSource.Handle « NiL;
cwRegularMenultems, cwTopPusheeMenultems: MenuData.ArrayHandle;
mergedMenultems: LONG POINTER TO MenuitemSeqd « NiL;
menu: MenuData.MenuHandle;

name: xstring.ReaderBody;

ticket: Containee.Ticket;

data: Containee.Data « [file];

type: NSFile.Type;

smallPicture: xstring.Character;

if file = NsFile.nullReference THEN RETURN [[NIL]];
source « FileContainerSource.Create [

file: file,

columns: columnContents,

scope: scope,

options: options];

[name, ticket] « Containee.GetCachedName [@data];
type « Containee.GetCached Type[@data;
smallPicture « Containee.Getimplementation[type].smallPicture;

shell « starwindowshell.Create [
name: @name,
namePicture: smallPicture,
sleeps: FALSE,
transitionProc: DestroyProc];

Containee.ReturnTicket [ticket];
body & starwindowshell.CreateBody [sws: shell, box: [[0,0].[700, 29999]]];

[ewRegularMenultems, cwTopPusheeMenultems] « Containerwindow.Create [
window: body,
source: source,
columnHeaders: columnHeaders,
firstitem: position];

mergedMenultems « MergeMenuArrays [cwRegularMenultems regularMenultems]);

IF mergedMenultems # NIL THEN
‘BEGIN
menu « MenuData.CreateMenu [
zone: starwindowsShell.GetZone[shell],

St

1 7 ContainerWindow

title: nit,

array: DESCRIPTOR[mergedMenultems],

copyltemsintoMenusZone: TRUE];
StarWindowShell.SetRegularCommands [shell, menu];
z.FREE[@mergedMenultems];
END;

~

mergedMenultems « MergeMenuArrays [cwTopPusheeMenuitems,
topPusheeMenultems];
menu « MenuData.CreateMenu [

zone: Starwindowshell.GetZone[shell],

title: NiL,

array: DESCRIPTOR[mergedMenultems],

copyltemsintoMenusZone: FALSE |;
starwindowsSheil.SetTopPusheeCommands [shell, menu];
RETURN [shell];
END;

DestroyProc: StarWindowShell.TransitionProc =
< <[sws: StarWindowShell.Handle, state: StarWindowShell.State] > >
BEGIN
IF state = dead THEN {
cw: window.Handle « GetContainerWindow(sws];
source: ContainerSource.Handle « GetContainerSource[sws];
ContainerSource.ActOn [source, destroyl;
Containerwindow.Destroy[cw]; };
RETURN;
END;

MergeMenuArrays: PROC [itemArray1, itemArray2: MenuData.ArrayHandle]
RETURNS [mergedSeq: LONG POINTER TO MenultemSeq] =
BEGIN
i: CARDINAL « 0;
IFitemArray1 = NILAND itemArray2 = NIL THEN RETURN([NIL];
mergedSeq « z.NEW [MenuitemSeqfitemArray1.LENGTH + itemArray2.LENGTH]];
FOR j: CARDINALIN [0..itemArray1.LENGTH) DO
mergedSeq[i] « itemArray1(j];
ie—i+1;
ENDLOOP;
FOR j: CARDINAL IN [0..itemArray2.LENGTH) DO
mergedSeq[i] « itemArray2[j];
je—i+1;
ENDLOOP;
RETURN[mergedSeq];
END; '

ViewPoint Programmer’s Manual

17

17.4 Index of Interface Items
Item

Access: TYPE

AccessType: TYPE
BooleanfalseDefauit: TYPe
ColumnHeaderinfo: Type
ColumnHeaders: TYPE
Create: PROCEDURE

CreateX: PROCEDURE
DeleteAndShowNextPrevious: PROCEDURE
Destroy: PROCEDURE
Direction: TYPE
dividerAccess: Access

Error: ERROR

ErrorCode: TYPE

fullAccess: Access
GetOpenitem: PROCEDURE
GetSelection:PROCEDURE
GetSource: PROCEDURE

Isit: PROCEDURE
MakeltemVisible: PROCEDURE
ModifySource:PROCEDURE
readOnlyAccess: Access
Selectitem:PROCEDURE
SetSource:PROCEDURE
SourceModifyProc:PROCEDURE
Update: PROCEDURE

e~
=)
+2-}
®

AL WNABAWWWWWNLBRBNWNWS 2 aNNNN

=1
-1

17

ContainerWindow

17-8

18

Context

MRRRAR

18.1 Overview

In performing various functions, an application may wish to save and retrieve state from
one notification to the next. This is an immediate consequence of the notification scheme,
for a tool cannot keep its state in the program counter without stealing the processor after
responding to an event. Thus the application must explicitly store its state in data.
Because most notification calls to the application provide a window handle, it is natural to
associate these contexts with windows. The context mechanism provides an alternative to
the application’s having to build its own associative memory to retrieve its context, given
a window handle.

Typically, an application obtains a unique Type for its context data by calling UniqueType
in the startup code for the application. Whenever a window is created, the client allocates
some context data and calls Create to associate that data with the window. Whenever the
client is called to perform some operation on the window (for example, to display the
contents of the window or to handle a notification), it calls Find to retrieve the data saved
with the window. Finally, when the window is being destroved, the client (orViewPoint)
calls Destroy, which calls the client’s DestroyProcType to give the client an opportunity to
free the data.

18.2 Interface Items
18.2.1 Creating/Destroying a Context

UniqueType: PROCEDURE RETURNS (type: Type];

The procedure UniqueType is called if a client needs a unique Type not already in use
either by ViewPoint or by another client. If no more unique types are available, the ERROR
Error[tooManyTypes] is raised.

Create: PROCEDURE [
type: Type, data: Data, proc: DestroyProcType, window: Window.Handle];

o

18

Context

18-2

The procedure Create creates a new context of type type that contains data. The context is
associated with window; it is said to "hang" on the window. If window already has a
context of the specified type, it raises the ERROR Error{duplicateType]. If the window is NiL,
it raises the ERROR Error{windowisNIiL]. The proc is supplied so that when the window is
destroyed, all of the context can be destroyed (deallocated).

Type: TYPE = MACHINE DEPENDENT{
all(0), first(1), lastAllocated(377378), last(377778)};

Type is unique for each client of the context mechanism. An argument of this type is
passed to most of the procedures in this interface so that the correct client data can be
identified.

Data: TYPE = LONG POINTER TO UNSPECIFIED;

Data is the value that a client may associate with each window. It is typically a pointer to
a record containing the client's state for some window.

DestroyProcType: TYPE = PROCEDURE [Data, Window.Handle];

A DestroyProcType is passed to Create so that the client can be notified when the context
should be destroyed. This may be the result of the window being destroyed.

Destroy: PROCEDURE [type: Type, window: Window.Handle];

The procedure Destroy destroys a context of a specific type on window. If fhe céntext
exists on the window, it calls the DestroyProcType for the context being destroyed.

DestroyAll: PROCEDURE [window: Window.Handle);
The procedure DestroyAll destroys all the contexts on window. Fine point: DestroyAll can be

very dangerous because ViewPoint keeps its window-specific data in contexts on the window. DestroyAll should
not be used except in special circumstances. It is called by the routines that destroy windows.

NopDestroyProc: DestroyProcType;

The procedure NopDestroyProc does nothing. It is provided as a convenience to clients
that do not want to create their own do-nothing DestroyProcType to pass to Create.

SimpleDestroyProc: DestroyProcType;

The procedure SimpleDestroyProc merely calls the system heap deallocator on the data
field. It is provided for clients whose context data is a simple heap node in the system zone.

18.2.2 Finding a Context on a Window

Find: PROCEDURE [type: Type, window: Window.Handle] RETURNS [Data];

The procedure Find retrieves the data field from the specified context for window. NiL is
returned if no such context exists on the window.

ViewPoint Programmer’s Manual 18

FindOrCreate: PROCEDURE [
type: Type, window: Window.Handle, createProc: CreateProcType] RETURNS [Data];

The procedure FindOrCreate resolves the race that exists when creating new contexts in a
multi-process environment. If a context of type type exists on window, it returns the
context's data; otherwise, it creates a context of type by calling createProc and then
returns data. If the window is NiL, it raises the ERROR Error[windowisNIL].

CreateProcType: TYPE = PROCEDURE RETURNS [Data, DestroyProcType];

CreateProcType is used by FindOrCreate. The procedure passed in as an argument to
FindOrCreate is called to create a context only if a context of the appropriate type cannot
be found.

Set: PROCEDURE [type: Type, data: Data, wfhdow: window.Handle];

The procedure Set changes the actual data pointer of a context. Subsequent Finds will
return the new data. Note: The client can change the data that the data field of a context
points to at any time. This could lead to race conditions if multiple processes are doing
Finds for the same context and modifying the data. It is the client’s responsibility to
MONITOR the data in such cases. If the window is NIL, it raises the ERROR
Error[windowisNIL].

18.2.3 Acquiring/Releasing the Context

Acquire: PROCEDURE [type: Type, window: Window.Handle] ReTuRNS [Data];

The procedure Acquire retrieves the data field from the specified window. It returns Nit. if
no such context exists on the window. It also locks the context object so that no other calls
on Acquire or Destroy with the same type and window will complete until the context is
freed by a call on Release.

Release: PROCEDURE [type: Type, window: Window.Handle];
The procedure Release releases the lock on the specified context object for window that

was locked by the call on Acquire. If the specified context cannot be found or if it is not
locked, Release is a no-op.

18.2.4 Errors

ErrorCode: TYre = {duplicateType, windowisNIL, tooManyTypes, other};

duplicateType is raised by Create if a context of the given type already exists on the
window passed as an argument.

windowisNIL is raised if the client has passed in a NIL window.
tooManyTypes is raised if UniqueType has been called too many times.
Error: eRROR [code: ErrorCode];

Error is the only error raised by any of the Context procedures.

18 Context

18.3 Usage/Examples

Acquire and Release can be used in much the same way as a Mesa MONITOR (See the Mesa
Language Manual: 610E00150). It is important that the client call Release for every
context that has been obtained by Acquire; this is not done automatically. The cost of
doing an Acquire is barely more than entering a MONITOR and doing a Find. Using this
technique allows the client to monitor its data rather than its code.

If several tools must share global data, it is possible to place a context on
window.rootWindow that is never destroved, even when the bitmap is turned off. To share
a Type without having to EXPORT a variable, use one in the range (lastAllocated..last].
Contact the support organization to have one allocated to you.

18.3.1 Example
myContextType: Context.Type « Context.UniqueType(];
MyContext: TYPE = LONG POINTER TO MyContextObject;
MyContextObject: TYPE = RECORD [...];
sysZ: UNCOUNTED ZONE « Heap.systemZone;

MakeShellAndBodyWindow: PROCEDURE = {
‘myContext: MyContext « sysZ.New [MyContextObject « [
-- initialize fields of MyContextObject --]1;
-- Note: /f some field of MyContextObject were a pointer to some more allocated
storage, then the Context.SimpleDestroyProc would not be used. A client-supplied
DestroyProcType that freed both MyContextObject and the storage pointed to by
MyContextObject would have to be provided.

shell: starwindowsheil.Create [...];
body: starwindowshell.CreateBody [sws: shell,
repaintProc: MyRepaint,
bodyNotifyProc: MyNotify];
Context.Create [type: myContextType,
data: myContext,
proc: Context.SimpleDestroyProc,
window: bodyl;

Y

18-4

ViewPoint Programmer’s Manual l 8

MyRepaint: PROCEDURE [window: window.Handle] = {
myContext: MyContext « FindContext [window];

5
MyNotify: Tip.NotifyProc = {
myContext: MyContext « FindContext [window];

}
FindContext: PROCEDURE [window: Window.Handle]
RETURNS [myContext: MyContext] = {

mycContext « Context.Find [myContextType, window];
iIF myContext = NiL THEN ERROR;

}

18

Context

18.4 Index of Interface Items

18-6

Item

Acquire: PROCEDURE

Create: PROCEDURE
CreateProcType: TYPE
Data: TYpe

Destroy: PROCEDURE
DestroyAll: PROCEDURE
DestroyProcType: TYPE
Error: ERROR

ErrorCode: TYPE

Find: PROCEDURE
FindOrCreate: PROCEDURE
NopDestroyProc: PROCEDURE
Release: PROCEDURE

Set: PROCEDURE
SimpleDestroyProc: PROCEDURE
Type: TYPE

UniqueType: PROCEDURE

Page

= NDNWWNWNWWNNNNW2W

19

MM

Cursor

19.1 Overview

The Cursor interface provides a procedural interface to the hardware mechanism that
implements the cursor on the screen. This interface defines several cursor shapes as well
as operations for client-defined cursors. Because there is a single global cursor, it should
be manipulated only through this interface and only from the notifier process.

The major data structure defined in this interface is the Object, which defines not only the
array of bits that represents the picture of the cursor but also its hot spot. The hot spot of a
cursor consists of the coordinates within the 16-by-16 array that indicate the screen
position pointed to by the mouse. The hardware position of the cursor is always in the
upper-left corner of the bit array. For many cursor shapes, this position is not where the
cursor points. For example, the pointRight cursor shape is a right-pointing arrow whose
hot spot is at the tip of the arrow.

There can be up to 256 different cursors, limite_d by the size of the Type enumeration. The
first several types are system-defined. Clients may call UniqueType to allocate an unused
type for their own use.

This interface is typically used to change the cursor either by calling Set to set it to one of
the system-defined cursors or by calling Store. To restore the cursor, save it into an Object
by calling Fetch before it is changed.

19.2 Interface Items

19.2.1 Major Data Structures
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE = RECORD [info: Info, array: userTerminal.CursorArray];

Info: TYPE = RECORD [type: Type, hotX: {0..16), hotY: [0..16)];

19-1

19

Cursor

Type: TYPE = MACHINE DEPENDENT{
blank(0), builseye(1), confirm(2), ftpBoxes(3), hourGlass(4), lib(5), menu(6),
mouseRed(7), pointDown(8), pointLeft(9), pointRight(10), pointUp(11),
questionMark(12), scrollDown(13), scrollLeft(14), scrollLeftRight(15), scroliRight(16),
scrollUp(17), scrollUpDown(18), textPointer(19), groundedText(20), move(21),
copy(22), sameAs(23), adjust(24), row(25), column(26), last(3778));

Object defines the type and hot spot of the cursor as well as the 16-by-16 array of bits that
represent the cursor's picture.

Info contains the type and the hot spot of a cursor.
Defined: TYpE = Type[blank..column];

Defined is the subrange of Type that contains the system-defined cursors.

19.2.2 Setting the Cursor Picture

Set: PROCEDURE [type: Defined];

Set sets the displayed cursor to be one of the system-defined cursors.
Store: PROCEDURE [h: Handle];

Store sets the displayed cursor to the cursor described by h.
StoreCharacter: PROCEDURE [c: XChar.Character];

StoreCharacter stores the system font picture of character c into the cursor. The info is set
to [type: column.succ, hotX: 8, hotY: 8].

StoreNumber: PROCEDURE [Nn: CARDINAL];
StoreNumber sets the cursor picture to be the number n MoD 100. If n is less than 10, the

single digit is centered in the cursor. The info is set to [type: column.succ.succ, hotX: 8,
hotY: 8].

19.2.3 Getting Cursor Information

19-2

Fetch: PROCEDURE [h: Handle];

Fetch copies the current cursor object into the object pointed to by h.
GetInfo: PROCEDURE RETURNS [info: Info];

Getinfo returns the hot spot and type of the current cursor.
FetchFromType: PROCEDURE [h: Handle, type: Defined];

FetchFromType copies the system-defined cursor object corresponding to type into the
object pointed to by h.

ViewPoint Programmer’s Manual 19

19.2.4 Miscellaneous Operations

MoveintoWindow: PROCEDURE [
window: window.Handle, place: window.Place];

MoveintoWindow moves the cursor to the window-relative place in window.
Swap: PROCEDURE [old, new: Handle];

Swap places the displayed cursor object in old 1 and Stores the new. [t is equivalent to
Fetch{oid]; Store[new].

19.2.5 Client-Defined Cursors
UniqueType: PROCEDURE RETURNS [Type];
UniqueType lets clients assign a unique type to their defined cursors. It returns u Type

that is different from all predefined types and from any that have previouslv been
returned by UniqueType. The value is only valid during the current boot session.

19.2.8 Cursor Picture Manipulation
Invert: PROCEDURE RETURNS [BOOLEAN;

Invert inverts each bit of the cursor picture and inverts the positive/negative state of the
picture. It returns TRUE if the new state of the cursor is positive.

MakeNegative: PROCEDURE;

MakeNegative is equivalent to MakePositive followed by Invert. It sets the
positive/negative state of the cursor to negative.

MakePositive: PROCEDURE;

MakePositive sets the positive/negative state of the cursor to positive. The state is set to
positive whenever Set or Store is invoked.

19.3 Usage/Examples

The following example shows a client setting the cursor to an hourglass while performing
some time-consuming action. It first saves the current cursor and restores it when it is
done, if the action did not change the cursor. If the client knew what the cursor should be,
the cursor would not have to be saved but could be unconditionally set .

savedCursor: Cursor.Object;

Cursor.Fetch[@savedCursor];

Cursor.Set[hourGlass]

-- Do action --

IF Cursor.Getinfo[].type = hourGlass THEN Cursor.Store{@savedCursor];

19-3

19

Cursor

19-4

StoreCharacter is typically used to put small pictures in the cursor by using characters
obtained from simpleTextFont. AddClientDefinedCharacter.

ViewPoint Programmer’s Manual

19

19.4 Interface Item Index

Item

Defined: TYPE

Fetch: PROCEDURE
FetchFromType: PROCEDURE
Getinfo: PROCEDURE
Handle: Type

info: TYPE

Invert: PROCEDURE
MoveintoWindow: PROCEDURE
MakeNegative: PROCEDURE
MakePositive: PROCEDURE
Object: TYre

Set: PROCEDURE

Store: PROCEDURE
StoreCharacter: PROCEDURE
StoreNumber: PROCEDURE
Swap: PROCEDURE

Type: TYPE

UniqueType: PROCEDURE

v

)
n

)

W INWNNNINN2D2D WWWWS QNNNN

19-5

1 9 Cursor

19-6

20

RN

Directory

20.1 Overview

Directory allows for clients to add dividers to the directory icon. Directory maintains a
directory divider containing three top-level dividers: the workstation divider, containing
those objects that exist on a per-workstation basis; the user divider, containing those
objects that exist on a per-user or per-desktop basis; and the network divider, containing
those objects that exist in the internet. (See the Divider and CHDivider interfaces for more
information about dividers.) :

20.1.1 Predefined Divider Structure

Directory automatically creates a top-level divider that backs the directory icon. To this
divider it adds the workstation divider, the user divider, and the network divider. It adds
three entries to the workstation divider: the prototype folder, the office aids divider, and
the local devices divider. The user divider is emptied at each logout. Clients of the user
divider should add their entries at each logon. Directory also automatically adds the
organization divider to the network divider and the domain divider to the organization
divider. Clients can add entries to the domain divider (see Figure 20.1). (See the
Prototype interface for details of how to add prototype icons to the prototype folder and the
Divider interface for details of how to add entries to the office aids, local devices, and user
dividers.)

20.2 Interface [tems

20.2.1 Adding Items to a Predefined Divider
DividerType: TYPE = {top, ws, user, domain, localDevices, officeAids};

A parameter of type DividerType is passed to AddDividerEntry to specify one of the
predefined dividers. A value of top specifies adding a new top-level divider.

AddDividerEntry: PROCEDURE [

divider: DividerType,
type: NSFile.Type,

20

20

Directory

label: xstring.Reader,

data: LONG POINTER & NIL,

convertProc: Divider.ConvertProc « NiL,
genericProc: Divider. GenericProc «NiL];

AddDividerEntry adds an entry to the divider specified by divider. If divider is equal to
top, a new top-level divider is added. type specifies the NsFile.Type of the entry. It is used to
obtain the Containee.Implementation for the entry. label is used to label the entry when it
appears in the divider's container window. The xstring.Reader bytes are copied. data is an
optional data pointer to be supplied in subsequent calls to the GenericProc and the
ConvertProc. convertProc is a Divider.ConvertProc for the entry, and genericProc is a
Divider.GenericProc for the entry. (See the Divider interface for details.) Fine point: The
predefined dividers are actually implemented by using the Divider interface. AddDividerEntry is actually the
same as Divider. AddEntry, with the handle arguement replaced by a Oirectory.DividerType.

20.2.2 GetDividerHandle

GetDividerHandle: PROCEDURE [divider: DividerType] RETURNS [handlé: Divider.Handle];

GetDividerHandle returns the Divider.handle for the predefined divider specified by
divider. Clients can use this handle to manipulate the predefined divider with the Divider
interface. (See the Divider chapter for more information.)

20.3 Usage/Examples

20-2

See the Divider and CHDivider interfaces for examples of how to add entries to the
directory. The Divider interface also shows the implementation of AddDividerEntry.

ViewPoint Programmer’s Manual

20

I Directory I

I g N—
Workstation
——— Basic Documents,
_’ Folders, and
Record Files
N ppuy TSN
_} . Office Aids
e
_’ Local Devices

I

|
13

J
?

Network

Organizations

‘

Domains

=]

User

Figure 20.1 Predefined Divider Structure

20-3

20 Directory

20.4 Index of Interface Items

Item Page
AddDividerEntry: PROCEDURE 1
GetDividerHandle: PROCEDURE 2
DividerType: TYPE 1

20-4

21

RN

Display

21.1 Overview’

The Display interface provides elementary routines for painting into windows on the
display screen. Procedures are provided for painting points; lines; bitmaps; repeating
patterns: boxes filled with black, gray, white, or small patterns; circles; circular arcs;
ellipses; conics; as well as for painting a brush as it moves along an arbitrary trajectory.
Another procedure allows shifting the current content of a window. Procedures for
painting text are available in the SimpleTextDisplay interface.

The Window interface supplies facilities for managing windows. The introduction section
of the Window chapter describes the window coordinate system and the process of
painting into a window. The reader should be familiar with that material.

As described in the Window chapter, the display background color, which is represented
by a pixel value of zero, is commonly called white, and a value of one, called black. Note
however, that the display hardware can also render the picture using zero for black and
one for white. Clearing or erasing an area of the screen means setting all of its pixels to
zero, or white.

The Display interface currently contains procedures that apply to text--namely Block,
MeasureBlock, ResolveBlock, Character, Text, and Textlnline. They are not supported. The
SimpleTextDisplay interface provides text painting operations.

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window responds by calling back into

the client's display procedure to do the painting. Nonstandard ways of painting are
discussed in the Usage/Examples section of this chapter.

21.2 Interface Items

21.2.1 Painting Filled Boxes, Horizontal Lines, and Vertical Lines

Handle: TYPE = window.Handle;

[}
—
—

21

Display

Black: PROCEDURE [window: window.Handle, box: window.Box];
Invert: PROCEDURE [window: window.Handle, box: window.Box];
White: PROCEDURE [window: window.Handle, box: window.Box];
Black and White paint black and white boxes. Invert changes all black pixels to white and
all white pixels to black in the box. These procedures perform their operation on the
specified box in window. Horizontal and vertical black lines can be painted by using Black

with a box that is one pixel wide or tall.

Display.Handle is provided for backward compatibility.

21.2.2 Painting Bitmaps and Gray Bricks

The procedures in this section allow the client to paint bitmaps and gray bricks into a
window. Bitmaps and gray bricks are described in the Mesa Processor Principles of
Operation.

The first items below define some convenience types and constants that are used with
bitmaps and painting.

BitAddress: TYPE = Environment.BitAddress;
DstFunc: TYPE = BitBlt.DstFunc;
BitBItFlags: TyPe = git8it.BitBItFlags;

A sitsit.BitBItFlags is an argument of the Bitmap and Trajectory operations. These flags
control how source pixels and existing display pixels are combined to produce the final
display pixels. The flag constants defined below cover most of the common cases.
gitBit. BitBItFlags are described in detail in the Mesa Processor Principles of Operation.

replaceFlags: BitBitFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: FALSE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceFlags paints opaque black and opaque white from a bitmap. Source pixels from the
bitmap overwrite the previous display pixels.

textFlags, paintFlags: BitBitFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: nuil, dstFunc: or, reserved: 0};

textFlags and its synonym paintFlags paint opaque black and transparent white from a
bitmap source. Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xorflags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: FALSE, gray: FALSE,
srcFunc: null, dstFunc: xor, reserved: 0];

ViewPoint Programmer’s Manual 2 1

xorFlags is used with a source bitmap to selectively video invert existing display pixels.
Video inverting is the process of changing white to black and black to white. Black source
pixels invert the existing display pixels. White source pixels leave display pixels
unchanged.

paintGrayFlags, bitFlags: BitBltFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: or, reserved: 0];

paintGrayFlags paints opaque black and transparent white from a gray brick source.
Black source pixels cause black display pixels. White source pixels leave display pixels
unchanged.

replaceGrayFlags, boxFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: null, reserved: 0];

replaceGrayFlags paints opaque black and opaque white from a gray brick source. Source
pixels overwrite the previous display pixels.

xorGrayFlags, xorBoxFlags: BitBItFlags = [
direction: forward, disjoint: TRUE, disjointitems: TRUE, gray: TRUE,
srcFunc: null, dstFunc: xor, reserved: 0];

xorGrayFlags is used with a source gray brick to selectively video invert existing display
pixels. Black source pixels invert the existing display pixels. White source pixels leave .
display pixels unchanged.

eraseFlags: BitBltFlags = [
direction: forward, disjoint: FALSE, disjointitems: FALSE, gray: FALSE,
srcFunc: complement, dstFunc: and, reserved: 0];

eraseFlags erases objects. Previous display pixels are overwritten.

Bitmap: PROCEDURE [
window: window.Handle, box: window.Box, address: Environment.BitAddress,
bitmapBitWidth: carpiNAL, flags: sitsit.BitBItFlags « paintFlags];

Bitmap paints the bitmap described by address and bitmapBitWidth into box in window,
using flags to control the interaction with pixels already being displayed. Bitmap may be
used to display a gray pattern that is not aligned relative to the window origin.
box.dims.w must be less than or equal to bitmapBitWidth, this is not checked. flags.gray
is ignored. :

BitAddressFromPlace: PROCEDURE [
base: environment.BitAddress, x, y: NATURAL, raster: CARDINAL]
RETURNS [Environment.BitAddress];

BitAddressFromPlace returns the Environment.BitAddress of the pixel at coordinates x and y
in the bitmap described by base. raster is the number of pixels per line in the bitmap. This
procedure is useful for calculating the address parameter of Bitmap.

21

Display

Brick: TYPE = LONG DESCRIPTOR FOR ARRAY OF CARDINAL; A,

Bricks are used by Gray and Trajectory to describe a repeating pattern to fill an area. The
maximum size of a Brick is 16 words; each word is one row of the pattern.

fiftyPercent: Brick;
fiftyPercent is a brick containing a 50% gray pattern.

Gray: PROCEDURE [
window: window.Handle, box: window.Box, gray: Brick « fiftyPercent,
dstFunc: sitBit.DstFunc « null];

Gray uses the source gray brick to completely fill box in window. If the content of the
brick to be displayed is not aligned with the window origin, use Bitmap instead. The table
below describes the effect of dstFunc.

dstFunc resulting display pixels

null Source pixels overwrite display pixels.

or Black source pixels cause black display pixels. White source pixels leave
display pixels unchanged.

xor Black source pixels cause the existing display pixels to be inverted. White
source pixels leave display pixels unchanged.

and Black source pixels cause black display pixels wherever the display pixels are
already black. All other display pixels will be made white.

21.2.3 Painting Points, Slanted Lines, and Curved Lines

The procedures below paint points, oblique straight lines, and circular arcs and conics.
Point: PROCEDURE [window: window.Handle, point: window.Place];
Point makes the single pixel at point in window black.
LineStyle: TYPE = LONG POINTER TO LineStyleObject;
LineStyleObject: TYPE = RECORD |

widths: ARRAY [0..DashCnt) Of CARDINAL,

thickness: CARDINAL];
DashCnt: CARDINAL = 6;
LineStyle describes the style of lines for the Line, Circle, Ellipse, Arc, and Conic operations.
thickness defines the width of the line in pixels. widths defines the dash structure. Each
pair of elements is the number of pixels of black followed by the number of pixels of white.

For example [widths: [4,2,0,0,0,0], thickness: 2] defines the style for a dashed line two
pixels thick, where the dashes are four pixels on and two off.

ViewPoint Programmer’s Manual 21

Line: PROCEDURE [
window: window.Handle, start, stop: window.Place, lineStyle: LineStyle «niL,
bounds: Window.BoxHandle e« nNIL];

Line paints a line from start to stop in window. If bounds # NiL, the line is clipped to the
box bounds. If lineStyle is defaulted, the line is solid and is a single pixel wide.

Circle: PROCEDURE [,
window: window.Handle, place: window.Place, radius: INTEGER,
lineStyle: LineStyle «niL, bounds: window.BoxHandle « NiL];

Circle paints a circle centered at place in window, with the given radius. If bounds # niL,
the circle is clipped to the box bounds. If lineStyle is defaulted, the circle is solid and is a
single pixel wide.

Ellipse: PROCEDURE |
window: window.Handle, center: window.Place, xRadius, yRadius: INTEGER,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle « NiL];

Ellipse paints an ellipse with axes centered at center with an x radius of xRadius and a y
radius of yRadius in window. The axes of the ellipse are parallel to the x-y coordinate
system. Ellipses with oblique axes may be displayed by using Conic. If bounds # NiL, the
ellipse is clipped to the box bounds. If lineStyle is defaulted, the ellipse is solid and is a
single pixel wide.

Arc: PROCEDURE | -
window: window.Handle, place: window.Place, radius: INTEGER,
startSector, stopSector: CARDINAL, start, stop: Window.Place,
lineStyle: LineStyle « NiL, bounds: window.BoxHandle « NiL];

Arc paints a portion of a circular arc centered at place in window, with the given radius.
The arc goes from the angle defined by start in the startSector to stop in the stopSector.
Sectors are simply octants numbered from 1 to 8, with northeast being 1 and increasing
clockwise. If bounds # NiL, the arc is clipped to the box bounds. If lineStyle is defaulted,
the arc is solid and is a single pixel wide.

Conic: PROCEDURE {
window: window.Handle, a, b, ¢, d, e, errorTerm: LONG INTEGER,
start, stop, errorRef: window.Place,
sharpCornered, unboundedStart, unboundedStop: BOOLEAN,
lineStyle: LineStyle « niL, bounds: window.BoxHandle « NiL];

Conic paints the portion of the curve of the equation ax2 + by2 + cxy +dx + ey + f=0in
window from start to stop. Instead of passing in the last coefficient f, this procedure takes
the errorTerm resulting from substituting start into the equation. If the conic contains
points whose radius of curvature is less than or equal to two pixels, it must be displayed by
using multiple calls with sharpCornered set to TRUE; otherwise ,sharpCornered should be
FALSE. These “"sharp-cornered” conics must be broken up into segments where the corners
become a new segment’s start and stop points. For example, a very long skinny ellipse
must be displayed in two pieces. errorRef, unboundedStart, and unboundedStop are

8}
—
N

2 1 Display

ignored. If bounds # NiL, the conic is clipped to the box bounds. If lineStyle is defaulted, -~
the conic is solid and is a single pixel wide.
21.2.4 Painting Parallelograms and Trapezoids
These types and procedures are used to paint parallelograms and trapezoids:
FixdPtNum: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID * FROM
wholeThing = > [li: LONG INTEGER],
parts = > [frac: CARDINAL, int: INTEGER],
ENDCASE];
A FixdPtNum is a fixed-point integer with 16 bits of fraction and 16 bits of integer part.
These numbers can be added and subtracted in a straightforward manner, while division
and multiplication are more difficult. By using the overlaid record, the fraction and
integer part may be obtained without shifting or dividing. FixdPtNum can express all
practical slopes with only small errors.
Interpolator: TYPE = RECORD [
val, dVal: FixdPtNum];
Interpolator is used to define parallelograms and trapezoids. The dVal term is the
derivative with respect to y; for example, x.dVal is dx/dy.
BlackParallelogram: proc |
window: Handle, p: Parallelogram, dstFunc: DstFunc « null];
Parallelogram: TYPE = RECORD |
' x: Interpolator, y: INTEGER, -- upper left
W: NATURAL, -- across lop, must be positive
h: NATURAL];
BlackParallelogram paints the parallelogram defined by p in window. dstFunc acts as in
the procedure Gray. The parallelogram is defined as below with the slope of the
parallelogram being p.x.dVal. In Figure 21.1 the slope is two fifths. BlackParallelogram
(p.x.val, p.y)
P Py \ I - I
Figure 21.1 Parallelogram definition PN

optimizes a common case (such as diagonal lines) and runs about twice as fast as

21-6

ViewPoint Programmer’s Manual 2 1

GrayTrapezoid by avoiding the second interpolation, the noninteger width, and the gray
alignment calulations:

GrayTrapezoid: PrOC |)
window: Handle, t: Trapezoid, gray: Brick « fiftyPercent, dstFunc: DstFunc « null];

Trapezoid: TYPE = RECORD [
x: Interpolator, y: INTEGER, -- upper left
w: Interpolator, -- across top; must be positive
h: NATURAL];

GrayTrapezoid paints the trapezoid defined by t in window. gray and dstFunc act as in the
procedure Gray. The trapezoid is defined in Figure 21.2 with the slope of the left side of the
trapezoid being t.x.dVal and the slope of the right side of the trapezoid being t.x.dVal
minus t.w.dVal. [n Figure 21 2, t.x.dVal is minus one half and t.w.dVal is nine tenths.

(t.x.val, t.y) \‘ Iq-——- t.w.val _—_’{

—r
1

Figure 21.2 Trapezoid definition

21.2.5 Painting Along Trajectories, Shifting Window Contents
Shift: PROCEDURE [window: Window.Handle, box: window.Box, newPlace: window.Place];

Shift does a block move of a rectangular portion of window’s current content. This
operation does not invoke any client display procedures. box describes the region of
window to be moved to newPlace. If Display does not have the pixels for a visible area of
the destination box, that area is filled with trash and marked invalid. The client should
validate the window when it has finished altering the window content. Shift does not
invalidate the areas vacated by the move; if they are repainted, the client should
invalidate them. If Shift is executed from within a display procedure, it does not clip the
region painted to window’s invalid area list. Invalid area lists are explained in the
Window chapter. '

21-7

21

Display

Trajectory: PUBLIC PROCEDURE [
window: window.Handle, box: window.Box « window.nullBox, proc: TrajectoryProc,
source: LONG POINTER « NIL, bpl: CARDINAL « 16, height: CARDINAL « 16,
flags: sitsit.BitBItFlags « bitFlags, missesChildren: BOOLEAN «FALSE,
brick: Brick «niL]; '

TrajectoryProc: TYPE = PROCEDURE [Handle] RETURNS [Window.BOX, INTEGER];

Trajectory repeatedly calls proc and paints a brush where proc specifies. The brush may
be either a gray brick or a portion of the bitmap source. Trajectory avoids much of the
overhead of successive calls to the normal Display routines. box is the window region in
which painting may occur. The client must not try to paint outside box; this is not
checked. flags controls the type of painting performed. If flags.gray = TRUE, the gray brick
is painted; otherwise, a bitmap is painted. Trajectory repeatedly calls proc for
instructions. If proc returns a box having dims.w = 0 (such as window.nullBox), iteration
ceases and Trajectory returns. Otherwise dims.w # 0; Trajectory paints the brush and
then loops to call proc again. The brush paints the returned Box in the window as follows.
If a gray brick is being painted, the brick completely fills the returned Box. If a bitmap is
being painted, the bitmap starts at a bit offset of <INTEGER> from source, is Box.dims.h
high, and has bpl pixels per line. The client may wish to aiter the brush content along the
trajectory by having source be a large bitmap containing several different brush patterns
and having proc return the bit offset and Box.dims of the desired portion. (Bit8it.BitBItFlags
are described in §21.2.2.) height and missesChildren are unused. proc must not call any
procedures in Display or Window; doing so will result in a deadlock.

21.3 Usage/Examples

21.3.1 Special Topic: Direct Painting

21-8

As described in the Window chapter, the standard way for a client to paint into its window
is to update its data structures, invalidate the portion of its window that needs to be
painted, and then call a window.Validate routine. Window responds by calling back into
the client’s display procedure to do the painting.

The client may also paint directly into a window without going through window.Validate.
However, this direct-painting approach is subject to several pitfalls and system bugs.
Clients commonly choose direct painting only when high painting performance is
required, such as dynamically extending an inverted selection whlle tracking the mouse
or implementing a blinking caret.

Pitfall 1: One consequence of doing direct painting is that the window’s display procedure
must not depend on Window clearing invalid areas for it. As described in the Window
chapter, if clearingRequired = TRUE, Window guarantees that when the display procedure
is called to paint the window, all of the window’s pixels that should be white indeed are
white. In that situation, the window might contain any combination of its previous
contents and erased areas. Notice that the following sequence of events might occur:
Window clears invalid area; then the client direct paints into some part of the invalid
area; then Window calils the window's display procedure. In this situation, the parallel
direct-paint activity has voided Window’s guarantee of the content of the invalid area. To

ViewPoint Programmer’s Manual 2 1

handle this case, the display routine must erase or otherwise completely overpaint the
invalid areas itself.

Pitfall 2: A client can get into trouble when it wishes to change the state of the backing
data being displayed within a display procedure and attempts to make the change by
painting from the display procedure rather than by invalidating the affected area and
painting later. The display procedure’s paint is clipped to its invalid area list and thus
fails to achieve the desired effect. There are several ways to solve this problem:

o Do not change the backing data inside a display procedure. This approach matches
nicely with the intended function of a display procedure. Do not expect a display
procedure to change data—its job is to repaint.

¢ Have the display procedure just invalidate the areas affected by the data being
changed. Because a validate is already in progress, it is not necessary to call
window.Validate. When the display procedure returns, it is called back with any new
invalid areas that are waiting for it.

e Have the display procedure call window.FreeBadPhosphortist before changing the
data. This allows paint from the display procedure to affect the entire window, not
just the invalid areas.

21.3.2 Exampie 1

The program fragments below demonstrate the use of Display in a window’s display
procedure.

-- Enumerated TYPEs for displaying the games background.
Background: Tyre = {gray, white};
background: Background « gray;

DisplayBoardSW: proc [window: window.Handle] = {
-- This is the body window’s display procedure.
vLine, hLine: window.Box;
left, right, top, bottom: INTEGER;

FindBounds: PrOC [window: window.Handle, box: window.Box] = {
left « MiN[left, box.place.x];
top « MIN[top, box.place.y];
right «max(right, box.place.x + box.dims.w};
bottom « max[bottom, box.place.y + box.dims.h]};

-- Paint borders and background.
Display.Black[window: window, box: boardAndBorderBox];
PaintBackground{window: window, box: boardBox];
vLine « [upperLeft, [lineWidth, (boardSize - 1)*unitH + 1]];
hLine « [upperLeft, [(boardSize - 1)*unitwW + 1, lineWidth}];
THROUGH [firstDimboardSize] o

Display.Black{window, vLine];

Display.Black[{window, hLine};

viLine.place.x « vLine.place.x + unitW;

21-9

21

Display

21-10

hLine.place.y « hLine.place.y + unitH;
ENDLOOP;

left ¢ tOp « INTEGER.LAST;
right « bottom ¢« INTEGER.FIRST;
window.EnumeratelnvalidBoxes[FindBounds]

Y

PaintBackground: PROC [window: Window.Handle, box: window.Box] = {

SELECT background FrROM
gray = > Display.Gray[window, box];
white = > Display.White{window, box];
ENDCASE

L

PaintStone: pusLICPROC [who: BlackWhite, u, v: Dim, play: CARDINAL] = {

center: window.Place;
stoneBox: window.BoOx;
numstr: STRING « [3];

IF-ValidCoords{u, v] THEN RETURN;

center « BoardToPlacelu, v];

stoneBox « [

place: [center.x - stoneRadius, center.y - stoneRadius],
dims: [stoneSize, stoneSizel];

-- paint a bitmap that represents game pieces.

Display.Bitmap| .
window: boardSW, box: stoneBox, address: outerStone,
bitmapBitWidth: stoneBpl, flags: pisplay.paintFlags];

IFwho = white THEN

Display.Bitmap(
window: boardSW, box: stoneBox, address: innerStone,
bitmapBitWidth: stoneBpl, flags: eraseFlags];

2

CreateGoSWS: PUBLIC PROCEDURE [

reference: NsFile.ReferenceRecord, name: eEnvironment.Block]
RETURNS [Starwindowsheil.Handle] = {

-- This procedure is invoked via a system menu.

$z: Starwindowshell. Handle;

starWindowsShell.SetPreferredDims [sz, {592, 661]];
-- The display procedure is set here.
boardSW & StarwindowsShell.CreateBody [

SWS: S2,

ViewPoint Programmer’s Manual

21

repaintProc: DisplayBoardSW,
bodyNotifyProc: TIPMe |;

21-11

21

Display

21.4 Index of Interface [tems

21-12

Item

Arc: PROCEDURE

BitAddress: TYPE
BitAddressFromPlace: PROCEDURE
BitBItFlags: TypE

bitFlags: Bitsit.BitBItFlags
Bitmap: PROCEDURE

Black: PROCEDURE
BlackParallelogram: PROCEDURE
boxFlags: sitsit.BitBitFlags
Brick: TypE

Circle: PROCEDURE

Conic: PROCEDURE

DashCnt: PROCEDURE

DstFunc: TYPE

Ellipse: PROCEDURE

eraseFlags: sitsit.BitBlItFlags
fiftyPercent: Brick
FixdPtNum: TYPE

Gray: PROCEDURE
GrayTrapezoid: PROCEDURE
Handle: Type

Interpolater: TYPE

Invert: PROCEDURE

Line: PROCEDURE

LineStyle: Type
LineStyieObject: TYPE
paintBitFlags:sitsit.BitBitFlags
paintFlags: sitsit.BitBItFlags
paintGrayFlags: sitsit.BitBltFlags
Parailelogram: Tyee

Point: PROCEDURE
replaceboxFlags: sitsit.BitBItFlags
replaceflags: sitsit.BitBItFlags
replaceGrayFlags: sitBit.BitBItFlags
Shift: PROCEDURE

textFlags: sitsit.BitBItFlags
Trajectory: PROCEDURE
TrajectoryProc: TYPe
Trapezoid: TYPE

White: PROCEDURE
xorBoxFlags: sitsit.BitBItFlags
xorFlags: sitBit.BitBItFlags

xorGrayFlags: sitsit.BitBltFlags

~
)
o
®

22

AR

Divider

22.1 Overview

Divider maintains a table of entries in memory, each representing an icon. The entries
may or may not be backed by files. Divider does not operate on these entries directly; it
uses a Divider.ConvertProc and a Divider.GenericProc associated with each entry.

Also associated with each entry is an Nsfile.Type used to identify the entry's
Containee.Implementation, a label, and a pointer to instance-specific data for the entry.

Associated with each divider when it is created is an NsFile.Type. Divider automatically
sets a Containee.lmplementation for this file type that supports converting the divider to a
file and opening the divider as a container window displaying the entries.

Also associated with each divider is a cH.Pattern specifying a clearinghouse domain and
organization. It is inherited from a parent divider and is passed to all entries through the
Divider.ConvertProc and the Divider.GenericProc associated with each entry. When the
divider is converted to a file, the pattern is automatically encoded in an attribute of the
file.

22.2 Interface Items

22.2.1 Creating and Destroying
Handle: TYPE = LONG POINTER TO Object;
Object: TYPE;

Create: PROCEDURE [
type: NsFile.Type,
name: Xstring.Reader,
initialSize: CARDINAL « Divider.defaultinitialSize,
increment: CARDINAL ¢« Divider.defaultincrement,
zone: UNCOUNTED ZONE ¢ NiL]
RETURNS [handie: Handle};

(2]
1~
—

22

Divider

Create creates a divider. type specifies the NSFile.Type the divider has if it is converted to a
file. A Containee.Implementation is automatically set for this type. name specifies the name
of the divider. It appears in the window header when the divider is opened, and it is the
name of the file if the divider is converted to a file. The Xstring.Reader bytes are copied. The
divider is created with a table large enough to hold initialSize entries. If an entry is added
when the table is full, the table grows by increment entries. Storage for the divider is
allocated from zone. If zone is defaulted, storage is allocated from a heap maintained by
Divider.

Destroy: PROCEDURE [handle: Handle];

This releases all storage associated with the given divider. handle is no longer valid when
this procedure returns.

22.2.2 ConvertProc and GenericProc

ConvertProc: TYPE = PROCEDURE [
data: LONG POINTER,
pattern: cH.Pattern,
target: Selection.Target,
zone: UNCOUNTED ZONE,
info: Selection.Conversioninfo « [convert({]]]
RETURNS [value: Selection.Value];

A ConvertProc is the same as a Selection.ConvertProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. (See the Selection
interface for the definition of the other arguments.) Whenever the divider is requested to
convert one of its entries, it calls the ConvertProc associated with an entry, with pattern
set to the domain and organization associated with the divider,

GenericProc: TYPE = PROCEDURE [
atom: Atom. ATOM, :
data: LONG POINTER,
pattern: cH.Pattern,
changeProc: Containee.ChangeProc « NiL,
changeProcData: LONG POINTER ¢ NiL]
RETURNS [LONG UNSPECIFIED];

A GenericProc is the same as a Containee.GenericProc except that it has the extra argument,
pattern, that specifies a clearinghouse domain and organization. (See the Containee
interface for the definition of the other arguments.) Whenever the divider is requested to
operate on one of its entries, it calls the GenericProc associated with an entry, with pattern
set to the domain and organization associated with the divider.

DividerConvertProc: ConvertProc;
DividerGenericProc: GenericProc;
These procedures may be associated with entries that themselves are dividers. In this case

the Handle associated with the divider should be provided as the instance-specific data
handle. See below for an example of u divider contained in another divider.

ViewPoint Programmer’s Manual 292

22.2.3 Adding and Finding Entries

AddEntry: PROCEDURE [
handle: Handle,
type: NsFile.Type,
label: xstring.Reader,
data: LONG POINTER & NIL,
convertProc: ConvertProc « NiL,
genericProc: GenericProc «=nNiL];

AddEntry adds an entry to the divider specified by handle. type obtains the
Containee.Implementation for the entry. label is used to label the entry in the divider's
container window. The xstring.Reader bytes are copied. data is item-specific data for the
entry that is passed to the ConvertProc and GenericProc associated with the entry. If
convertProc or genericProc is defaulted, the divider uses the corresponding procedure in
the entry’s Containee.lImplementation.

FindEntry: PROCEDURE [handle: Handle, type: NsFile.Type,
label: xstring.Reader]
RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindEntry finds the entry in the divider handle with the specified type and label. found
indicates whether the item was in the divider. entryData is the data associated with the
entry, if it was found. FindEntry is defined in DividerExtra.mesa.

FindOrAddEntry: PROCEDURE [handle: Handle, type: NsFile.Type,
label: xstring.Reader, data: LONG POINTER ¢ NIL,
convertProc: ConvertProc « NiL,
genericProc: GenericProc « NiL]
RETURNS [found: BOOLEAN, entryData: LONG POINTER];

FindOrAddEntry finds the entry in the divider handle with the specified type and label,
and adds an entry if it was not found.- found indicates whether the item was in the
divider. entryData is the data associated with the entry, if it was found. FindOrAddEntry
is defined in DividerExtra.mesa.

22.3 Usage/Examples

22.3.1 Fragment from Directorylmpl.mesa

This fragment is from Directoryimpi.mesa, which implements the Directory interface. It
shows the implementation of Directory.AddDividerEntry and the mainline code to create the
top-level directory dividers. See the CHDivider interface for more examples.

-- File types for the directory implementation --
directory: starfileTypes.FileType = ...;

folder: starfileTypes.FileType = ...;

workstation: starfileTypes.FileType = ...;

user: StarfileTypes.FileType = ...;

domain: starfileTypes.FileType =...;

22 Divider

-- The reference for the prototype folder --
prototypeReference: NsFile.Reference ¢ ...;

-- Handles for the top-level dividers --
dividers: ARRAY Directory.DividerType OF Divider.Handle e« ALL [NIL];

AddDividerEntry: PUBLIC PROCEDURE [
divider: Directory.DividerType,
type: NsFile.Type,
label: xstring.Reader,
data: LONG POINTER &~ NIL,
convertProc: Divider.ConvertProc « NiL,
genericProc: Divider.GenericProc «niL] =
BEGIN
Divider.AddEntry [
handle: dividers{divider],
type: type,
label: label,
data: data,
convertProc: convertProc,
genericProc: genericProc];
END;

-- Create the top-level dividers (top will back the directory icon) --
dividers[top] « Divider.Create [directory, stringDirectory};
dividers[ws] « Divider.Create {workstation, stringWorkstation};
dividers[user] «Divider.Create [user, stringUser];

-- Insert the workstation divider into the directory --
Directory.AddDividerEntry |

divider: top,

type: workstation,

label: stringWorkstation,

data: dividers{ws],

convertProc: Divider.DividerConvertProc,

GenericProc: Divider.DividerGenericProc];

-- Insert the user divider into the directory --
Directory.AddDividerEntry [

divider: top,

type: user,

label: stringUser,

data: dividers{user],

convertProc: pivider.DividerConvertProc,

genericProc: Divider.DividerGenericProc];

-- Insert the prototype folder into the workstation divider --
-- (Note: this is an actual file that will use the folder implementation) --
Directory.AddDividerEntry [

divider: ws,

R

ViewPoint Programmer’s Manual

22

type: folder,
label: stringPrototypes,
data: @prototypeReference];

22

Divider

22.4 Index of Interface Items

22-85

[tem

AddEntry: PROCEDURE
ConvertProc: TYPE

Create: PROCEDURE

Destroy: PROCEDURE
Divider.COnvertProc:TYPE
DividerConvertProc: ConvertProc
DividerGenericProc: GenericProc
FindEntry: PROCEDURE
FindOrAddEntry: PROCEDURE
GenericProc: TYPE

Handle: Typre

Object: TYPE

w
®
[}

= LA NWWNNNN=NW

23

—————
—————————
————————
v —————
—————

— Event

23.1 Overview

ViewPoint provides a facility that permits clients to register procedures that are to be
called when specified events occur. For example, a client may wish to be notified whenever
a document is closed, or perhaps just the next time a document is closed. Clients need not
know which module-can cause the event.

23.2 Interface Items

23.2.1 Registering Dependenéies

A client wishing to be notified of some future event calls either AddDependency or
AddDependencies, specifying the EventType and an AgentProcedure to be called when
the event occurs. Note: ViewPoint need not know in advance what EventType is
implemented, nor which modules implement them.

AddDependency: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
event: EventType,
remove: FreeDataProcedure « NiL]
RETURNS [dependency: Dependency];

AddDependencies: PROCEDURE [
agent: AgentProcedure,
myData: LONG POINTER TO UNSPECIFIED,
events: LONG DESCRIPTOR FOR ARRAY OF EventType,
remove: FreeDataProcedure « NiL]
RETURNS [dependency: Dependency];

AgentProcedure: TYPE = PROCEDURE [
event: EventType,
eventData, myData: LONG POINTER TO UNSPECIFIED]
RETURNS {remove, veto: BOOLEAN « FALSE];

(™)
—~
—

23

Event

(S
W

|3

FreeDataProcedure: TYPE = PROCEDURE [mydata: LONG POINTER TO UNSPECIFIED];
Dependency: TypE [2]; -- Opaque --

A dependency may be added to an event or an entire set of events by calling
AddDependency or AddDependencies. Both of these procedures return a private type,
Dependency, that uniquely identifies that set of dependencies. The value returned may be
saved and subsequently used in a call to RemoveDependency, which removes the
dependency or dependencies associated with the earlier AddXXX call. The
AgentProcedure may also remove the dependency, as discussed below.

When the specified event occurs, agent is called with the EventType, the eventData for
the event, and the client data passed as myData. If a client wishes to veto the event (for
instance, to disallow a world-swap), its AgentProcedure should return veto: TRUe. This
aborts the notification; that is, no other clients dependent on the event are notified.
However, there is no guarantee of the order in which multiple clients are notified. If any
client vetoes the event, the call to Notify returns TRUe. There is no way to prevent a client
from vetoing; instead, implementors of events that should not be vetoed should raise an
ERROR if Notify returns TRUE. To remove its dependency on an event, a client’s
AgentProcedure should return remove: TRUE. If the dependency is removed and a
FreeDataProcedure was provided, it is called at this time to allow the client to free any
private data.

EventType: TYPE = Atom.ATOM;

The ATOM (strings) used to identify different events must of course be distinct. The
following examples are possibilities of how this could be managed. (1) By a central
authority whose job it is to guarantee uniqueness of EventTypes. This could be the same
person in charge of other such allocations, such as NSFile types. (2) By a hierarchical
naming structure, managed by a distributed authority. (3) By a file that lists all known
EventTypes within a given system; this file is managed by the Librarian to ensure against
parallel allocation of new EventTypes. (In effect, this is the same as case 1, but the
Librarian takes the place of the central authority.)

RemoveDependency: proc [dependency: Dependency];
NoSuchDependency: ERROR;

If RemoveDependency is called with a Dependency that is invalid (possibly because the
dependency has already been removed), it raises the error NoSuchDependency.

23.2.2 Notification

Notify: PROCEDURE [event: EventType, eventData: LONG POINTER TO UNSPECIFIED < NiL]
RETURNS [veto: BOOLEAN];

When the event occurs, the implementor cails Notify, giving it the EventType for the
event and any implementation-specific data (eventData) required by the client.
(Presumably it is uncommon for a single operation to wish to Notify more than one event:
this is why Notify does not take an ARRAY argument.) The Event interface then invokes
each AgentProcedure that is dependent on the EventType. Each AgentProcedure is given

ViewPoint Programmer’s Manual 23

the EventType causing the notification, the client data provided when the dependency was
created, and the eventData given by the implementor in the call to Notify.

23.3 Usage/Examples

The Event database is monitored to disallow changes while a Notify is in progress. An
AgentProcedure is allowed to call Notify; that is, one event may trigger another.
However, an AgentProcedure must not call AddDependency or RemoveDependency, or
deadlock will result. Because it is relatively common for an AgentProcedure to wish to
remove its own dependency, the AgentProcedure can return remove: TRUE to cause the
dependency to be removed. If the dependency was added via AddDependencies, then all of
the dependencies created by that call are removed. The dependency is removed even
though some later client of the same event might choose to veto the event. (If an earlier
client has already vetoed, of course, then this AgentProcedure never gets called.) If an
application requires that a dependency be removed only if the event is not vetoed, the
implementor can notify a second event that informs clients whenever the first event is
vetoed.

Three notes regarding the preceding paragraph: First, an AgentProcedure may get called
twice even if it always returns remove: TRUE because two separate processes may be doing
parallel calls to Notify. Once an AgentProcedure returns remove: TRUE, no subsequent
calls to Notify invoke that dependency, but any parallel calls in progress complete
normally. Second, because an AgentProcedure might be invoked at any time, it is a bad
idea to call Add/RemoveDependency from within a private monitor, lest it lock trying to
modify the Event database while a Notify is inside the AgentProcedure trying to grab the
lock. However, the Notify call may very well be within the implementor’s monitor, which
means the AgentProcedure’s use of the eventData is typically limited. Finally, if an
AgentProcedure needs to call Add/RemoveDependency, it may get the desired effect by
FORKing the call so that it takes place shortly after the Notify already in progress.

23.3.1 Example 1

-- Module interested in an event
eventType: Event.EventType « Atom.MakeAtom [“SampleEvent”L];

EventAction: Event.AgentProcedure = {
-- Do appropriate thing for eventType -- };

gvent.AddDependency |
agent: EventAction,
myData: NiL,
event: eventType];

-- Module that signals the event
eventType: Event.EventType « Atom.MakeAtom [“SampleEvent”L];
eventData: -- Relevant info, a record, a window handle, etc. --;

(R

[o%)
]

“w

23

Event

{1 « Event.Notify [event: eventType, eventData: eventData];

23.3.2 Example 2

-- Declare event and eventData --
desktopWindowAuvailable: event.EventType;
desktopWindowHandle: window.Handle «niL;

-- Declare AgentProcedure --

StartUp: event.AgentProcedure = {
if eventData = NiL THEN RETURN [veto: TRUE];
desktopwWindowHandle « eventData };

-- Register event-- this is mainline code --
[] «event.AddDependency [StartUp, NiL, desktopWindowAuvailable];

-- In Desktop code, another module, notify occurrence of the event --
[1 e=Event.Notify [desktopWindowAvailable, window];
-- Window is desktop window --

ViewPoint Programmer’s Manual

23

23.4 Index of Interface Items
Item

AddDependencies: PROCEDURE
AddDependency: PROCEDURE
AgentProcedure: TYPE
Dependency: TYPE

EventType: TYPE
FreeDataProcedure: TYPE
NoSuchDependency: ERROR
Notify: PROCEDURE
RemoveDependency: PROCEDURE

Page

NINNNNN =2 @D

e

o
n

23

Event

23-6

24

FileContainerShell

24.1 Overview

FileContainerShell provides a simple way to implement a container application that is
backed by an NSFile. FileContainerShell takes an NSFile and column information (such as
headings, widths, formatting) and creates a FileContainerSource, a StarWindowShell, and
a ContainerWindow body. (See also the FileContainerSource, ContainerSource,
StarWindowsShell, and ContainerWindow interfaces) Most NSFile-backed container
applications can use this interface, thereby greatly simplifving the writing of applications
such as Folders and File Drawers.

24.2 Interface Items

24.2.1 Create a FileContainerShell

CreateX: PROCEDURE [
file: Nsrile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenuitems, topPusheeMenultems: MenuData.ArrayHandle «nit,
scope: NSFile.Scope «[],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options «[],
access: ContainerWindowExtra3.Access e ContainerwindoweExtra3.fullAccess]
RETURNS [shell: starwindowshell.Handle];

Create: PROCEDURE [
file: nsrile.Reference,
columnHeaders: Containerwindow.ColumnHeaders,
columnContents: FileContainerSource.ColumnContents,
regularMenultems, topPusheeMenultems: MenuData.ArrayHandle « N,
scope: NSFile.Scope « (],
position: ContainerSource.ltemindex « 0,
options: FileContainerSource.Options «[]]
RETURNS [shell: starwindowsShell.Handle];

24-1

24

FileContainerShell

Create and CrzateX create a StarWindowShell with a container window as the body
window. file i- the backing for the container; it must be an NSFile with children.
columnHeaders and columnContents specify all the necessary information about the
columns to be displayed for the open container. (See the ContainerWindow and
FileContainerSource interfaces for the specifics of the headers and contents.) scope
specifies ordermg, filtering, and direction, if any. position indicates the item that should
be displayed first. access specifies the ContainerWindow access. (See the
ContainerWinoow interface for details. regularMenultems and topPusheeMenultems
are the menu i—2ms that the client would like to put in the header of the StarWindowShell.
Create puts th-se items in the header along with its own menu items, such as Show Next
and Show Pre- ious. Fine point: The client is responsible for putting any bottomPusheeCommands in the
window header. C-eateX is defined in FileContainerShellExtra.mesa.

24.2.2 Operations on the Shell

GetContainerWindow: PROCEDURE [shell: starwindowshell. Handle]
RETURNS [window: window.Handle];

Returns the container window that was created by the Create procedure. May raise

Containerwindow.Error{notAContainerWindow] if the shell does not have a container
window in it.

GetContainerSource: PROCEDURE [shell: starwindowsSheil. Handle]
RETURNS [source:ContainerSource.Handle];

Returns the container source that was created by the Create procedure. May raise
Containerwindow.Error[notAContainerWindow] if the shell does not have a container
window in it.

24.3 Usage/Examples

24.3.1 Example: Creating a FileContainerShell and Specifying Columns

24-2

The following example presents the procedure CreateFileSWS, which takes an
nsrile.Reference and creates a file container shell with two columns: the name of the file
and a version date. (See the ContainerSource interface for details on columns.) The name
column uses the predefined ContainerSource.NameColumn; the version column is given in
the example. The version column differs from the standard ContainerSource.DateColumn in
that it displays the last modified date for directories instead of ---.

ContentSeq: TYPE = RECORD [

SEQUENCE ¢OlS: CARDINAL OF FileContainerSource.ColumnContentsinfo];
HeaderSeq: TYPE = RECORD [

SEQUENCE cOls: CARDINAL OF Containerwindow.ColumnHeaderinfo];
NumberOfColumns: CARDINAL = 2;
Z: UNCOUNTED ZONE = ...;

CreateFileSWS: PROCEDURE [reference: NsFile.Reference]
RETURNS [StarwindowShell. Handle] =
BEGIN
shell: starwindowshell.Handle;

ViewPoint Programmer’s Manual 24

headers: LONG POINTER TO HeaderSeq « MakeColumnHeaders(];
contents: LONG POINTER TO CantentSeq « MakeColumnContents[];
shell « FileContainerShell.Create(
file: reference,
columnHeaders: DescriPTOR[headers],
columnContents: DEsCRIPTOR[contents]];
z.FREE[@headers];
z.FREE[@contents];
RETURN[shell];
END;

DateFormatProc: FileContainerSource. MultiAttributeFormatProc =
BEGIN
-- If non-directory, show createdOn date. For directory, show last date modified
(the last time anything was changed in directory) --
template: xstring.ReaderBody «
xstring. FromSTRING[" <2>-<6>-<4> <8>:<9>:<10>"L];
XTime.Append| '
displayString,
IF attrRecord.isDirectory THEN attrRecord.modifiedOn ELSE attrRecord.createdOn,
@template]};
END;

MakeColumnContents: PROCEDURE
RETURNS [columnContents: LONG POINTER TO ContentSeq] =
BEGIN
dateSelections: NsFile.Selections « [interpreted: [
isDirectory: TRUE, createdOn: TRug, modifiedOn: TRUE]];

columnContents « z.NEW[ContentSeq[NumberOfColumns];

columnContents[0] « FileContainerSource.NameColumn(};

columnContents[1] « [multipieAttributes [attrs: dateSelections, formatProc:
DateFormatProc]];

RETURN [columnContents];

END;

MakeColumnHeaders: PROCEDURE

RETURNS [columnHeaders: LONG POINTER TO HeaderSeqg] =
BEGIN
columnHeaders « z.NEW[HeaderSeq[NumberOfColumns]];
columnHeaders[0] « [

width: 367,

heading: XString.FromSTRING["NAME"]];
columnHeaders[1] « [

width: 135,

heading: xstring.FromSTRING["VERSION OF"]];
RETURN [columnHeaders];
END;

24-3

24

FileContainerShell

24.4 Index of Interface [tems

24-4

Item

Create: PROCEDURE

CreateX: PROCEDURE
GetContainerSource: PROCEDURE
GetContainerWindow: PROCEDURE

Page

NN = -

25

FileContainerSource

25.1 Overview

FileContainerSource supports the creation of NSFile-backed container sources (see
ContainerSource). It also provides facilities for specifying the columns that will be
displayed for each item in the source.

FileContainerSource implements all the procedure types described in the ContainerSource
interface, as well as all the procedures described below.

25.2 Interface Items

25.2.1 Creation

Options: TYPE = RECORD (
readOnly: BOOLEAN « FALSE];

Create: PROCEDURE |
file: Nsrile.Reference,
columns: ColumnContents,
scope: NSFile.Scope « (],
options: Options «[]]
RETURNS [source: ContainerSource.Handle];

Creates a container source backed by file, which must be an NSFile with children. columns
describes the information that should be displayed for each entry in the container.
columns is copied by this procedure, so the client may release any storage associated with
columns after calling Create. scope specifies the range of files that is displayed. The
caller of Create is responsible for the storage in the scope parameter; FileContainerSource
will not copy it. It can be destroyed at the same time the source is destroyed. Typically the
client saves the pointer to scope storage in same place as source handle. options specifies
global information about the container source. The container window manages display
formatting. (See the ContainerWindow and FileContainerShell interfaces.)

25-1

25

FileContainerSource

25.2.2 Specifiying Columns

25-2

Columns may be specified when a file container source is created. Each column represents
information that is displayed for each item. The container window requests the columns
one at a time in the form of strings. In a file container source, each column must be based
on some combination of NSFile attributes. For each column, the creator of the file container
source specifies which attributes are required to format a string for that column and
supplies a procedure that is called with the specified attributes. When the files in the
source are enumerated, the procedure for a particular column is called with the values of
the specified attributes for each file, which should be used to generate the string for that
file.

ColumnContents: TYPE =
LONG DESCRIPTOR FOR ARRAY OF ColumnContentsinfo;

ColumnContents describes a set of columns in which each column is some information
that is displayed for each item in the container display. The columns are displayved in the
order given by this array.

ColumnType:TYPe = {attribute, extendedAttribute, multipleAttributes};

ColumnContentsinfo: TYPE = RECORD [
info: seLECT type: ColumnType FROM
attribute = > [
attr: NSFrile.AttributeType,
formatProc: AttributeFormatProc «Ni),
needsDataHandle: BOOLEAN «FALSE],
extendedAttribute = > [
extendedAttr: NSFile.ExtendedAttributeType,
formatProc: AttributeFormatProc «nNiL,
extendedAttribute = > [
extendedAttr: NSFile.ExtendedAttributeType,
formatProc: AttributeFormatProc «Nit],
multipleAttributes = > [
attrs: Nsrile.Selections,
formatProc: MultiAttributeFormatProc «niL],
ENDCASE];

ColumncContentsinfo describes a single column of information that can be displayed for
each item in a container display. Each column may be backed by one of three things: an
NSFile interpreted attribute (the attribute variant), and NSFile extended attribute (the
extendedAttribute variant), or some combination of several attributes (the
multipleAttributes variant). The attribute and extendedAttribute variants both take a
specification of what attribute is being described (attr and extendedAttr) and an
AttributeFormatProc that is called to render the attribute as a string. If needsDataHandle
= TRUE, then a valid Containee.DataHandle is passed to the format procedure as the
containeeData parameter, else the containeeData parameter is NIL. [f the column needs a
Containee.DataHandle in order to format it, then needsDataHandle should be TRUE. This
addition is for performance: obtaining a Containee.DataHandle requires an extra access to
the file, thus slowing up the enumeration. The multipleAttributes variant is for columns
that may require more than one attribute. (The typical example is the SIZE column in
folders, in which some items display the numberOfChildren attribute and others display

ViewPoint Programmer’s Manual 25

the sizelnPages attribute, depending on the isDirectory attribute.) attrs specifies all the
attributes required for this column. formatProc is the procedure that is called to format
" the column.

See the common types of columns provided below in the section on commonly used
columns.

AttributeFormatProc: TYPE = PROCEDURE |
containeelmpi: Containee.Implementation,
containeeData: Containee.DataHandle,
attr: NsFile.Attribute,
displayString: xstring.Writer];

When the container display mechanism displays a column that represents an NSFile
attribute, it calls the AttributeFormatProc specified for that column. attr contains the
attribute to be formatted for display. displayString returns a formatted string that
represents the desired attribute. containeeimpl may be used to make calls on'the
underlying implementation of the item being displayed.

MultiAttributeFormatProc: TYPE = PROCEDURE [
containeelmpl: Containee.Implementation,
containeeData: Containee.DataHandle,
attrRecord: NsFile.Attributes, -- LONG POINTER TO NSFile. AttributesRecord
displayString: xstring.Writer];

When the container display mechanism displays a column that represents multiple NSFile
attributes, it calls the MultiAttributeFormatProc specified for that column. attrRecord
contains the attributes to be formatted for display. displayString is used to return a
formatted string that represents the desired attribute containeelmpl may be used to
make calls on the underlying implementation of the item being displayed.

25.2.3 Operations on Sources

Getlteminfo: PROCEDURE {
source: ContainerSource.Handle, itemindex: ContainerSource.ltemindex]
RETURNS {file:NSFile.Reference, type: NsFile. Type];

Returns an nsrile.Reference and type for the specified item.

Info: PROCEDURE [sOurce: ContainerSource.Handle]
RETURNS [
file: Nsrile.Reference,
columns: ColumnContents,
scope: NSFile.Scope,
options: Options];

The Info procedure returns information about a file container source: the information
returned is the same information that was used to create the source (see the Create
procedure).

Isit: PROCEDURE [source: ContainerSource.Handle] RETURNS [BOOLEAN];

256-3

25

FileContainerSource

25-4

Isit returns TRuUE if source is a file container source.
ChangeScope: PROCEDURE [source: ContainerSource.Handle, newScope: NsFile.Scope];

Allows the scope (passed in to Create) to be changed. A call to ChangeScope is typically
followed by a source.ActOn[relist], then a Containerwindow.Update.

Rebuilditem: PROCEDURE [source: ContainerSource.Handle, item: ContainerSource.ltemindex];
Rebuildltem causes the FileContainerSource to rebuild item, for example after a client has

changed an attribute that is displayed in a column of the source. Note : the client must
cail the appropriate ChangeProc to get the container window to repaint properly.

25.2.4 Commonly Used Columns

These predefined procedures can be used in building a ColumnContents array.

lconColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfo];

lconColumn represents a column with a small icon picture in it. The small picture is
obtained from the containeelmpl.smallPicture that is passed in.

NameColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfol;

NameColumn represents a column with the file’s name in it.

SizeColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

SizeColumn represents a column with the file's size in it, as follows: If the file has the
isDirectory attribute, the numberOfChildren attribute is displayed with the label
“Objects”; if the file does not have the isDirectory attribute, the sizeinPages attribute is
displayed with the label “Disk Pages”.

DateColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfol;

DateColumn represents a column with the file's creation date in it, as follows: If the file
has the isDirectory attribute, dashes (---) are displayed: if the file does not have the
isDirectory attribute, the createDate attribute is displayed.

VersionColumn: PROCEDURE
RETURNS [attribute ColumnContentsinfo];

VersionColumn represents a column with the file’s version in it. VersionColumn is
defined in FileContainerSourceExtra.mesa. '

ViewPoint Programmer’s Manual 25

NameAndVersionColumn: PROCEDURE
RETURNS [multipleAttributes ColumnContentsinfo];

NameAndVersionColumn represents a column that has the file’s name and version
appended with an exclamation point in between, such as Foo!3. NameAndVersionColumn
is defined in FileContainerSourceExtra.mesa.

25.3 Usage/Examples

25.3.1 Example: Specifying Columns using FileContainerSource

The following example presents the procedure MakeFolderLikeShell, which takes an
NsFile.Reference (Containee.DataHandle) and creates a file container shell with the
number of columns dependent on some internal procedures. (See the ContainerSource
interface for details on columns.) The columns use the predefined columns such as
ContainerSource.NameColumn,

Columns: Type = {icon, name, version, nameAndVersion, size, createDate};
HeaderSeq: TYPE = RECORD [SEQUENCE ¢OlS: CARDINAL OF Containerwindow.ColumnHeaderinfoy;
ContentSeq: TYPE = RECORD{
SEQUENCE cOls: CARDINAL OF FileContainerSource.ColumnContentsinfol;
ColumnArray:TYPe = ARRAY {icon, name, version, size, date} OF CARDINAL;
columnWidths: LONG POINTER TO ColumnArray « z.New[ColumnArray « NuLL];

ClientsGenericProc: Containee.GenericProc =
< <[atom: Atom.ATOM,
data: Containee.DataHandle,
changeProc: Containee.ChangeProc « NiL,
changeProcData: LONG POINTER & NiL]
RETURNS [LONG UNSPECIFIED] > >
BEGIN :
SELECT atom FROM
open = > RETURN [
MakeFoldertikeShell |
data: data,
changeProc: changeProc,
changeProcData: changeProcDatal] |;

ENDCASE = > RETURN [oldFolder.genericProc [atom, datal];
END;

FreeColumnContents: puBLIC PROCEDURE [columnContents: LONG POINTER TO ContentSeq] =
BEGIN
z.FREe[@columnContents];
END;

FreeColumnHeaders: pPuBLIC PROCEDURE [columnHeaders: LONG POINTER TO HeaderSeq] =
BEGIN

25-5

25

FileContainerSource

25-6

z.FREE[@coplumnHeaders];
END;

MakeFolderLikeShell: PROCEDURE [

data: Containee.DataHandle,

changeProc: Containee.ChangeProc «nNit,

changeProcData: LONG POINTER & NiL]

RETURNS [shell: starwindowshell.Handle] = {

file: NsFile.Reference;

columnHeaders: LONG POINTER TO HeaderSeq « MakeColumnHeaders(];
columnContents: LONG POINTER TO ContentSeq « MakeColumnContents|};

mydata: Data « z.New [DataObject « [
¢d: data,
changeProc: changeProc,
changeProcData: changeProcDatal];
isLocal: BOOLEAN;
BEGIN ENABLE
UNWIND = > {
z.FRee{@mydata];
FreeColumnHeaders [columnHeaders];
FreeColumnContents [columnContents];

5

shell « FileContainershell.Create [
file: file,
columnHeaders: DesCRIPTOR[columnHeaders],
columnContents: DesSCRIPTOR[columnContents],
regularMenultems: If “isLocal THEN remoteRegularMenultems eLSE NiL];

IF shell = NIL THEN RETURN [shell];

Starwindowshell.SetlsCloselegalProc [shell, Closing];
Context.Create[context, mydata, DestroyContext, shell];
FreeColumnHeaders [columnHeaders];
FreeColumnContents [columnContents];
starwindowshell.SetPreferredDims [shell, [700, 0]];

RETURN [shell];
END; -- ENABLE

}

MakeColumnContents: PUBLIC PROCEDURE RETURNS [columnContents: LONG POINTER TO
ContentSeq] =

BEGIN

i: INTEGER -1;

columnContents « z.New[ContentSeq[CountColumns(]]];
IF Showlcon[] THEN

ViewPoint Programmer’s Manual 25

columnContents(i i + 1] «FileContainerSource.lconColumn(];
-- Procedures called below are not neccessary to the example.
columnContentsfi i + 1] «

ir ShowNameAndVersion(]

THEN FileContainerSourceExtra.NameAndVersionColumn(]

ELSE FileContainerSource.NameColumn(];
IF ShowVersion(] THEN

columnContents(i «-i + 1] «FileContainerSourceextra.VersionColumn[];
iIF ShowSize[] THEN

columnContents[i «i + 1] «FileContainerSource.SizeColumn(];
ir ShowCreateDate[] THEN

columnContents[i «i + 1] «FileContainerSource.DateColumn(];
RETURN [columnContents];
END;

257

25

FileContainerSource

25.4 Index of Interface Items

25-8

Item

AttributeFormatProc: TYPE
ChangeScope:PROCEDURE
ColumnContents: TYPE
ColumnContentsinfo: TYpe
ColumnType: TYPE

Create: PROCEDURE

DateColumn: PROCEDURE
Getlteminfo: PROCEDURE
lconColumn: PROCEDURE

Info: PROCEDURE

Islt: PROCEDURE
MultiAttributeFormatProc: TYpe
NameColumn: PROCEDURE
NameAndVersionColumn: PROCEDURE
Options: TYPE

Rebuilditem: PROCEDURE
SizeColumn: PROCEDURE
VersionColumn: PROCEDURE

N

0
m

o©

bbb =2V hAWWWRWERB2NNNLBW

26

FormWindow

26.1 Overview

The FormWindow interface allows clients to create and manipulate form items in a
window.

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
the client and user can obtain and set. The user obtains the current value of an item by
simply looking at it and sets the current value of an item by pointing at it appropriately
with the mouse. The client obtains and sets the value of items by calling appropriate
FormWindow procedures.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item’s value is of type BOOLEAN.

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choicelndex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A
multiplechoice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string. [t contains nonattributed text only. A text item’s
value is of type Xstring.ReaderBody.

A decimal item is a text item that has a value of type XLReal.Number.
An integer item is a text item that has a value of type LONG INTEGER.

A command item allows a user to invoke a command. When the user clicks over a
command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow. It can contain whatever
the client desires. A window item’s value is a Window.Handle. A client must provide its own
Ti.NotifyProc and window display proc for the window item.

26-1

26

FormWindow

26-2

26.1.1 Creating a FormWindow

A client creates a FormWindow by calling Formwindow.Create. Create does not actually
create a window; it takes an already existing window and turns it into a Formwindow.
Windows are usually created by calling starwindowsShell.CreateBody.

The client supplies a MakeltemsProc and optionally a LayoutPrac to formwindow.Create.
Create calls these two client procedures, first the MakeltemsProc and then the
LayoutProc. [n the MakeltemsProc, the client creates the individual items in the form by
calling FormWindow procedures that make items (see §26.1.2 and §26.2.2). In the
LayoutProc, the client specifies where each created item should be positioned in the
window by calling FormWindow procedures that specify layout (see the sections labeled
Layout in this chapter).

26.1.2 Making Form Items

There is a procedure for making each type of item: MakeBooleanitem, MakeChoiceitem,
MakeCommanditem, MakeDecimalltem, Makelntegeritem, MakeMultipleChoiceltem,
MakeTagOnlyltem, MakeTextltem, MakeWindowitem. Each item must have a unique
"key", a FormWindow.ItemKey. This is a CARDINAL supplied by the client to each
MakeXXXltem call. This key is then used in any future calls to manipulate that item, such
as to get the value of the item. The key must be unique within the FormWindow.

All items have some common characteristics and some type-unique characteristics. The
common ones are described here. Every item can have a tag that appears to the left of the
item and a suffix that appears to the right of the item. An item can have a box drawn
around it or not. The default is to draw the box. Items can be read-only (that is, the user
cannot change the value of the item). Items can be visible or invisible, and invisible items
can either take up white space in the window or not. See §26.2.2 for more details.

26.1.3 Getting and Setting Values

Every item that has a value that the user can change (all except tagonly and command
items) also has procedures for the client to get and set the value. These are:

GetBooleanitemValue DonelookingAtTextitemValue
GetChoiceitemValue SetBooleanitemValue
GetDecimalltemValue SetChoiceltemValue
GetintegeritemValue SetDecimalitemValue
GetMultipleChoiceltemValue SetintegeritemValue
GetTextitemValue SetMultipleChoiceltemValue
GetWindowitemValue SetTextitemValue

LookAtTextltemValue

ViewPoint Programmer’s Manual 26

Note: FormWindow handles all allocation of storage for values of items. The client need
not keep copies of item values while the FormWindow exists. Obtaining the current value
of an item is a simple call to one of the GetXXXItemValue procedures. This makes it easy to
ensure that the internal value of an item is always in sync with the display. (See §26.2.3
for more details.) Fine point: This storage allocation scheme is opposite to the one used by XDE's FormSW,
where the client owns the storage for items.

26.1.4 "Changed" BOOLEAN

Every item that has a value that the user can change (all except tagonly, command, and
window items) has a "changed” boolean associated with it. All items are created with this
boolean set to FALSE. FormWindow automatically sets this boolean to TRUE whenever the
user changes the item. This allows the client to determine which items have changed
when, for example, the user selects Done or Apply on a property sheet. The client is
responsible for resetting the changed hoolean to false by calling ResetChanged or
ResetAllChanged after examining the changed boolean with HasBeenChanged or
HasAnyBeenChanged. See §26.2.1 for more detail.

Boolean and choice items can have a client-supplied procedure that is called whenever the
item’s value changes (see BooleanChangeProc and ChoiceChangeProc in §26.2.1 and
26.2.2. The client may also supply a GlobalChangeProc that is called whenever any item
changes (see §26.2.1).

26.1.5 Visibility

Each item is either displayed in the form window or not. If an item is displayed in the form
window, it is visible. If an item is not currently displaved, it is either invisible or
invisibleGhost. If it is invisible, it does not take up any space on the screen (that is, any
items below it move up to take its screen space. If an item is invisibleGhost, the space that
it would occupy were it visible is white on the screen). An item’s visibility can be changed
at any time by calling SetVisibility (see §26.2.5.)

26.1.6 Layout

Items in a form window are laid out by calling various layout procedures after creating the
items to be laid out. If an item is not explicitly laid out, it will not appear in the form
window at all. A DefaultLayout procedure is provided that places each created item on a
separate line.

A form window consists of horizontal lines with zero or more items on each line. Each line
may be a different height. Any desired vertical spacing may be accomplished by using
appropriate heights for lines. Any desired horizontal spacing may be accomplished by
using appropriate margins between items. Items may be lined up horizontally by using
TabStops. Lines are created by calling AppendLine or InsertLine. [tems are placed on a
line by calling Appenditem or Insertitem. (See §26.2.6 for more detail.)

26-3

26

FormWindow

26.2 Interface Items

26-4

26.2.1 Creating a FormWindow, etc.

Create: PROCEDURE([
window: window.Handle,
makeltemsProc: MakeltemsProc,
layoutProc: LayoutProc «Nit,
windowChangeProc: GlobalChangeProc « NiL,
minDimsChangeProc: MinDimsChangeProc « niL,
zone: UNCOUNTED ZONE « NIL,
clientData: LONG POINTER «NIL];

Create takes an ordinary window and makes it a form window.

window is a window created by the client. Windows are usually created by calling
StarWindowsShell.CreateBody~

makeltems is a client-supplied procedure that is called to make the form items in the
window. makeltems should call various Formwindow.MakeXXXlitem procedures (see
§26.2.2). Fine point: makeltems is not called after Create returns, so makeitems can be a nested procedure.

layoutProc is a client-supplied procedure that is called to specify the desired position of the
items in the window. layoutProc is called after makeltems has been called. layoutProc
calls various layout procedures (see §26.2.6), such as AppendLine and Appenditem. If the
default is taken, the DefaultLayout of one item per line will be used

windowChangeProc is the global change proc for the entire window Any time any item
in the window changes, this procedure is called.

zone is the zone from which storage for the items will be allocated. FormWindow uses a
private zone if none is supplied.

clientData is passed to makeltems, layoutProc, and windowChangeProc when called.

May raise Error{alreadyAFormWindow].

DefaultLayout: LayoutProc;

The default for the Create layoutProc parameter. Specifies a layout of one item per line.
Destroy: PROCEDURE [window: window.Handle];

Destroy destroys all FormWindow data associated with window, turning it back into an
ordinary window. All form items are destroyed, but the window itself is not destroyed.
May raise Error[notAFormWindow].

GetClientData: PROCEDURE [window: window.Handle]
RETURNS [clientData: LONG POINTER];

GetClientData returns the clientData that was passed to Create. May raise
Error[notAFormWindow].

GlobalChangeProc: TYPE = PROCEDURE [
window: window.Handle,

ViewPoint Programmer’s Manual 26

item: ItemKey,
calledBecauseOf: ChangeReason,
clientData: LONG POINTER];

The client may supply a GlobalChangeProc to Create. Any time the value of any-item in
the window is changed, the GlobalChangeProc is called with the key of the item that was
changed. If more than one item was changed at one time (such as by a client call to
FormWindow.Restore), nullltemKey is passed in and the client must examine the "changed"
boolean of all items to see what was changed (see §26.2.4). calledBecauseOf indicates
what kind of action caused the GlobalChangeProc to be called. clientData is the LONG
POINTER that was passed to Create.

GetGlobalChangeProc: PROCEDURE [window: window.Handle]
RETURNS [proc: GlobalChangeProc];

GetGlobalChangeProc returns the GlobalChangeProc that was passed to Create. May

raise Error{notAFormWindow].
1]

SetGlobalChangeProc: PROCEDURE [window: Window.Handle,
proc: GlobalChangeProc] reTurns [old: GlobalChangeProc];

SetGlobaiChangeProc changes the GlobalChangeProc that was passed to Create. May
raise Error[notAFormWindow].

MinDimsChangeProc: TYPE = PROCEDURE [window: window.Handle,
old, new: window.Dims]; '

Whenever the minimum dimensions of the FormWindow change, the client-supplied
MinDimsChangeProc is called. This is useful for form windows that are nested as window
items inside another outer form window. Whenever the dimensions of the nested form
window change (because of items being made visible or invisible or a text item growing or
shrinking or new items being added, for example), the client that created the window item
and the nested form window can be called so that it can make the window item bigger or
smaller for the nested form window to be completely visible. (See also NeededDims.)

SetMinDimsChangeProc: PROCEDURE [window: window.Handle,
proc: MinDimsChangeProc] ReTurNS [old: MinDimsChangeProc];

SetMinDimsChangeProc changes the MinDimsChangeProc that was passed to Create. May
raise Error [notAFormWindow]. SetMinDimsChangeProc is defined in
FormWindowExtra2.mesa.

GetZone: PROCEDURE [window: window.Handle]
RETURNS [zOne: UNCOUNTED ZONE];

GetZone returns the zone associated with the FormWindow. May raise
Error{notAFormWindow].

Isit: PROCEDURE [window: window.Handle] RETURNS [yes: BOOLEAN];

Isit determines if a window is a form window. If window was made into a form window by
calling Formwindow.Create, then Islt returns TRUE, else FALSE.

28-5

26

FormWindow

26-6

LayoutProc:TYPe = PROCEDURE [window: window.Handle, clientData: LONG POINTER];

The client supplies a LayoutProc to Create to specify the location of items created by the
MakeltemsProc. See §26.2.6 for details of layout.

MakeltemsProc: TYPE s PROCEDURE [
window: window.Handle,
clientData: LONG POINTER];

The client supplies a MakeltemsProc to Create to make the form items in the window.
Create calls the client’s MakeltemsProc and various MakeXXXitem procedures (see
§26.2.2) to make the items. window should be passed to the various MakeXXXltem.
clientData is the same as that passed to Create. Fine point for clients of PropertySheet: clientData can
be passed to PropertySheet.Create and will be passed on to FormWindow.Create and the MakeitemsProc.

NeededDims: PROCEDURE [window: window.Handle]
RETURNS [Window.Dims};

NeededDims returns the minimum dimensions required for a window to hold all the
currently visible items in the form.

NumberOfitems: PROCEDURE [window: window.Handle] RETURNS [CARDINAL];

NumberQfitems returns the current number of form items in window. This count
includes visible and invisible items. It is useful for clients that create additional items
dynamically after the form has been created. May raise Error[notAFormWindow].

Repaint: PROCEDURE [window: window.Handle];

Repaint causes a window.Validate on window. This is used in conjunction with the
SetXXXItemValue, SetVisibility, Appenditem, and Insertltem procedures. All these
procedures take a repaint: BOOLEAN parameter. To minimize screen flashing while
changing several items at the Same time, the client may call these procedures with repaint
= FALSE and then call Formwindow.Repaint. The form window is not repainted until Repaint
is called. Warning: After calling any procedure with repaint a FALSE, Formwindow.Repaint
must be called. Otherwise, the screen will be inconsistent with the internal values. May
raise Error[notAFormWindow].

26.2.2 Making Form Items, etc.

Create procedures are provided for each type of item. These MakeXXXItem routines are
used to originally create items in a form window as well as to add items to an existing
window.

A number of parameters to each MakeXXXlItem procedure are identical and are deseribed
here, rather than with each procedure. If all of the defaults are taken for an item, it is
boxed, with no tags and not read-only. All of these may raise Error[notAFormWindow];

window is t;he form window the item is contained in. [t should be the same as the window
passed to the client’s MakeltemsProc.

ViewPoint Programmer’s Manual 26

myKey is a client-defined key (ItemKey) for the item. The item key uniquely identifies the
item. It should be used to make calls on other FormWindow procedures, such as
GetXXXitemVailue. Caution: The key must be unique within this form window.

tag is the text to be displayed before (to the left of) the item on the same line. (To put a tag
on a separate line, use MakeTagOnlyitem.)

suffix is the text to be displayed after (to the right of) the item on the same line.

visibility indicates whether the item should be displayed on the screen.

boxed indicates whether the item should have a box drawn around it or not.

readOnly = TRUE indicates that the user cannot edit the item. The item can be changed by
calling a SetXXXItemValue procedure.

ItemKey: TYPE = CARDINAL;

ItemKey uniquely identifies an item. An IltemKey is supplied by the client whenever an
item is made (MakeXXXltem). It should be used thereafter to identify the item to
FormWindow, such as then calling GetXXXItemValue or SetVisibility.

ItemType: TYPE = MACHINE DEPENDENT {choice(0), multiplechoice, decimal, integer,
boolean, text, command, tagonly, window, last(15)};

There are several types of items, each of which serves a different purpose and behaves
differently for the user. All items except tagonly and command have a current value that
can be obtained (GetXXXltemValue) and set (SetXXXitemValue).

A choice item has an enumerated list of choices, only one of which can be selected at any
point in time. A choice item’s value is of type Formwindow.Choiceindex.

A multiplechoice item is a choice item that can have an initial value of more than one
choice selected, but any succeeding values can have only one choice selected. A multiple
choice item’s value is of type LONG DESCRIPTOR FOR ARRAY OF CARDINAL.

A text item is a user-editable text string, and contains only nonattributed text. A text
item’s value is of type xString.ReaderBody.

A decimal item is a text item that has a value of type XtReal.Number.
An integer item is a text item that has a value of type LONG INTEGER.

A boolean item is an item with two states (on and off, or TRUE and FALSE). A boolean
item'’s value is of type BOOLEAN.

A command item allows a user to invoke a command. When the user clicks over a
.command item, a client procedure is called.

A tagonly item is an uneditable, nonselectable text string.

A window item is a window that is a child of the FormWindow and can contain whatever
the client desires. A window item’s value is a Window.Handle. A client must provide its own
Ti.NotifyProc and window display procedure for the window item.

nullltemKey: ltemKey;

nullltemKey is used to indicate no item.

26-7

26

FormWindow

26.2.2.1 Boolean Items

26-8

MakeBooleanitem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xString.Reader « NI,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
changeProc: BooleanChangeProc « nit,
label: BooleanitemLabel,
initBoolean: BOOLEAN « TRUE];

MakeBooleanltem creates a boolean item. A hoolean item value is of type BOOLEAN. When
the value is TRUE, the item is highlighted. When FALSE, it is not highlighted. When the user
clicks over the label part of a boolean item, the value toggles.

Tag LABEL suffix

Unhighlighted boolean item, value = FALSE

changeProc is a client-supplied procedure that is called whenever the value of the item

changes.

label is the string or bitmap that the user points at to toggle the item’s value. If label is a
string, the string is copied. If label is a bitmap, the bits are not copied, so the client must
ensure that the bitmap pointer is valid for the lifetime of the form window.

initBoolean is the initial value of the item.

May raise Error[notAFormWindow, duplicateltemKey].

BooleanitemLabel: TYPE = RECORD [
var: SELECT type: BooleanitemLabeiType FROM
string = > [string: xstring.ReaderBody],
bitmap = > [bitmap: Bitmap]
ENDCASE];

BooleanitemLabelType: TYPe = {string, bitmap};

A BooleanltemLabel is passed to MakeBooleanitem. [t is the part of the item that the user
points at and is or is not highlighted, depending on the value of the item. A label may be
either a string or a bitmap. (See §26.2.8 on Miscellaneous TYPEs for the definition of
Bitmap.) If label is a string, the string is copied. Iflabelis a bitmap, the bits are not copied,
so the client must ensure that the bitmap pointer is valid for the lifetime of the form
window.

BooleanChangeProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,

ViewPoint Programmer’s Manual 26

calledBecauseOf: ChangeReason,
newValue: BOOLEAN];

The client may provide a BooleanChangeProc to MakeBooleanitem. Whenever the item’s
value changes (TRUE to FALSE or FALSE to TRUE), this procedure is called. window is the form
window that the item is in. item is the key of the boolean item to which this
BooleanChangeProc is attached. calledBecauseOf indicates what kind of action caused the
change procedure to be called. newValue is the new value of the item. The item will
already have the new value when this procedure is called.

Caution: If a BooleanChangeProc does a SetXXXltemValue, the client should take
extreme care to prevent infinite recursion. (See §26.3.1.)

26.2.2.2 Choice Items

MakeChoiceltem: PROCEDURE [
window: window.Handle,
myKey: itemKey,
tag: xstring.Reader « NiL,
suffix: xstring.Reader «nNiL,
visibility: Visibility < visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
values: Choiceltems,
initChoice: Choiceindex,
fullyDisplayed: BOOLEAN «TRUE,
verticallyDisplayed: BOOLEAN «FALSE,
hintsProc: ChoiceHintsProc «NiL,
changeProc: ChoiceChangeProc « Nit,
outlineOrHighlight: OutlineOrHighlight « highlight];

MakeChoiceltem creates a choice item. A choice item is an enumerated list of choices, only
one of which can be selected at any time . The choices can be displayed to the user as either
strings or bitmaps, or some of each. The current choice is highlighted. When the user
clicks on a choice, it becomes the current choice and is highlighted. Each choice has a
client-defined Choicelndex associated with it that uniquely identifies that choice. The
value of a choice item is of type Choiceindex.

values is the list of all the possible choices. To indicate where to wrap the display around
to the next line, specify a wrapindicator variant in the appropriate place in the values
array. If a choice is a string, the string is copied. If a choice is a bitmap, the bits are not
copied, so the client must ensure that the bitmap pointer is valid for the lifetime of the
form window.

initChoice is the value of the initial choice.

fullyDisplayed indicates whether all the choices should be displayed or not. If
fullyDisplayed = TRUE, all the choices are displayed. If fullyDisplayed = FALSE, only the
current choice is displayed, with the rest of the choices being accessed via a pop-up menu

Caution: bitmaps cannot appear in pop-up menus, so fullyDisplayed = FALSE should not be
used if the choices are bitmaps. :

26-9

26

FormWindow

26-10

verticallyDisplayed indicates whether the choices should be displayed vertically or
horizontally. If fullyDisplayed = FaLSE, the value of verticallyDisplayed is ignored. Any
wrapindicators are skipped over when choices are displayed vertically. '

If hintsProc is supplied, it is called to make a pop-up hint menu. If the default is taken, the
form window will make a hint menu with all choices. Note: Because menus can only
contain strings (not bitmaps), a bitmap choice appears in the hints menu as a number
indicating the choice’s position. Note: This is not the same as the Choicelndex for that
choice.

If changeProc is supplied, it is called whenever the choice changes.

May raise Error[notAFormWindow,duplicateitemKey, invalidChoiceNumber].
OutlineOrHighlight: Tvyre = {outline, highlight};

Normally, the selected choice for a choice item is indicated by highlighting the choice. The
outlineOrHighlight parameter allows the selected choice to be outlined in a black box.
This is intended to support the Shading choice item on, for example, the triangle and
ellipse property sheets in the ViewPoint editor.

Choiceltems: TYPE = LONG DESCRIPTOR FOR ARRAY Choicelndex ofF Choiceltem;

Choiceltems is the list of possible choice for a choice item. A Choiceltems ARRAY is passed to
MakeChoiceltem. The choices are displayed in the order they appear in the Choiceltems
ARRAY.

Choiceltem: TYPE = RECORD |
var: SELECT type: ChoiceltemType FROM
string = > [
choiceNumber: Choiceindex,
string: Xstring.ReaderBody],
bitmap = >{
choiceNumber: Choiceindex,
bitmap: Bitmap],
wrapindicator = > NuLL];

ChoiceltemType: TYPe = {string, bitmap, wraplndicatdr};
Choicelndex: TYrPe = CARDINAL[0..37777B];

A choice item consists of an array of choices (Choiceltems). Each choice (Choiceltem)
consists of a unique number that identifies the choice (Choiceindex) and either a string or
a bitmap to display to the user. In addition, the Choiceltems array can contain a
wrapindicator wherever the client wants the choices to be wrapped around to begin
another line of choices. A wrapindicator Choiceltem is not a real choice; it serves only as
additional layout information for the FormWindow. If Choiceltem is a string, the string is
copied. If Choiceftem is a bitmap, the bits are not copied, so the client must ensure that the
bitmap pointer is valid for the lifetime of the FormWindow.

The client must construct a Choiceltems array before calling MakeChoiceltem. This can
be simplified if all the choices are strings by using the FormWindowMaessageParse
interface. It allows all the choices for a choice item to be stored as a single XMessage with

ViewPoint Programmer’s Manual 26

embedded syntax indicating individual choice strings and choice numbers. (See
FormWindowMessageParse for more detail.)

ChoiceChangeProc: TYPE = PROCEDURE |
window: window.Handle,
item: ItemKey,
calledBecauseOf: ChangeReason,
oldValue, newValue: Choicelndex];

The client may provide a ChoiceChangeProc to MakeChoiceitem. Whenever the choice
changes, this procedure is called. window is the form window that the item is in. item is
the key of the choice item to which this ChoiceChangeProc is attached. calledBecauseOf
indicates what kind of action caused the change procedure to be called. oldValue and
newValue correspond to the choice numbers assigned to the choices in MakeChoiceltem
The item has the new value when this procedure is called.

Caution: If a ChoiceChangeProc does a SetXXXitemValue, the client should take extreme
care to prevent infinite recursion. See §26.3.1, Calling ChangeProcs.

ChoiceHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS [
hints: LONG DESCRIPTOR FOR ARRAY OF Choiceindex,
freeHints: FreeChoiceHintsProc];

FreeChoiceHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
hints: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

The client may provide a ChoiceHintsProc to MakeChoiceltem. Whenever the user points
at the mouse menu for a choice item, this procedure is called. The hints returned are used
to construct a pop-up menu that is displayed. If the user selects one of the choices from the
pop-up menu, that choice becomes the current choice.

window is the form window that the item is in.
item is the key of the choice item to which this ChoiceHintsProc is attached.

hints is an array of choice numbers for the choices that the client wants to appear in the
menu. This allows a client to show a subset of all the choices to the user for situations in
which not all the choices make sense. hints must be allocated by the client. '

freeHints is a procedure that is called after the hint menu has been taken down to allow
the client to free any storage that was allocated when creating the hints array.

MakeMultipleChoiceltem: PROCEDURE f
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « Nit,
suffix: xstring.Reader «NiL,
visibility: Visibility < visible,
boxed: BOOLEAN « TRUE,

26-11

26

FormWindow

readOnly: BOOLEAN «FALSE,

values: Choiceltems,

initChoice: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
verticallyDisplayed: BOOLEAN «FALSE,

hintsProc: ChoiceHintsProc «ni,

changeProc: MultipleChoiceChangeProc « ni];

May raise Error[notAFormWindow, duplicateitemKey].

MultipleChoiceChangeProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
calledBecauseOf: ChangeReason,
oldValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex,
newValue: LONG DESCRIPTOR FOR ARRAY OF Choicelndex];

A multiple choice item is identical to a choice item, except that it may have more than one
initial value. (See MakeChoiceltem above for details of choice items.) A multiple choice
item is useful for showing the properties of a heterogenous selection, such as the font
property of a text selection that has more than one font.

26.2.2.3 Command Items

26-12

MakeCommanditem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NIL,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
commandProc: CommandProc,
commandName: Xstring.Reader,
clientData: LONG POINTER « NIL];

Creates a command item. A command item allows a user to invoke a command. When the
user clicks over the commandName, commandProc is called. If boxed is TRUE, the .
commandName appears with a rounded corner box drawn around it (rather than a square-
cornered box, to distinguish a command item from a boolean item). May raise
Error[notAFormWindow, duplicateitemKey].

NewMakeCommanditem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NIL,
suffix: xstring.Reader «NiL,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
commandProc: CommandProc,

ViewPoint Programmer’s Manual 26

label: CommanditemLabel,
clientData: LONG POINTER «—NIL];

CommandlitemLabel: TYPe = RECORD [
var: SELECT type: CommanditemLabelType FrROM
string = > [string: Xstring.ReaderBody],
bitmap = > [bitmap: Bitmap],
ENDCASE];

CommandlitemLabelType: TYPE = {string, bitmap};

NewMakeCommanditem is just like MakeCommanditem, but allows the label to be a

.bitmap. If label is the bitmap variant, the client must leave the storage for the bitmap
allocated as long as the item exists. NewMakeCommanditem is defined in
FormWindowExtra3.mesa.

CommandProc: TYPE = PROCEDURE |
window: window.Handle,
item:ltemKey, clientData: LONG POINTER];

A CommandProc is supplied by the client to MakeCommanditem. It is called whenever
the user selects the command item. window is the FormWindow that the item is in. item
is the key of the command item to which this CommandProc is attached.

26.2.2.4 Tagonly items

MakeTagOnlyitem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader,
visibility: Visibility « visible];

Creates a tagonly item. Tagonly items are displayed as uneditable, nonselectable text.
May raise Error[notAFormWindow, duplicateitemKey].

26.2.2.5 Text and Number Items

MakeTextlitem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NiL,
suffix: xstring.Reader «NiL,
visibility: Visibility < visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN «FALSE,
width: CARDINAL, -- in screen dots
initString: xstring.Reader « NiL,
wrapUnderTag: BOOLEAN « FALSE,
passwordFeedback: BOOLEAN « FALSE,
hintsProc: TextHintsProc «nNiL,

26-13

26

FormWindow

26-14

nextOutOfProc: NextOutOfProc « NiL,
SPECIALKeyboard: Blackkeys.Keyboard « NiL 1

Creates a text item. Text items are user-editable text strings. The value of a text item is of
type xstring.ReaderBody. The user may select text, extend the selection, insert text, delete
text, move and copy text,and so forth. Text items are fixed width but may grow and shrink
vertically as the user enters and deletes text. A text item contains nonattributed text only.
FormWindow handles all storage allocation for the backing string.

width is the number of screen dots wide that the item should be. The item may grow
arbitrarily long as the user enters text, but it will always retain the same width.

.initString is the initial string to place in the text item. The bytes are copied by

FormWindow.

wrapUnderTag specifies whether any text wider than the width of the text item should
appear underneath the tag (wrapUnderTag = TRUE) or start at the left edge of the text
item (wrapUnderTag = raLse). Note: This feature is not yet implemented: items always
behave with wrapUnderTag = FALSE.

passwordFeedback indicates that the text should be displayed in an unreadable form
(such as asterisks) rather than as normal characters. The correct value of the string is
maintained internally, so that a call to GetTextitemValue will return the proper value. [f
any part of a passwordFeedback field is copied or moved, the underlying string is NOT
copied.

If hintsProc is supplied, it is called to make a list of strings to be displayed to the user as a
pop-up hint menu. (See TextHintsProc below.)

If nextOutOfProc is supplied, it is called when the user presses the NEXT key while the
input focus is in this text item. This gives the client an opportunity to create more text
items. After calling the nextOutOfProc or if no nextOutOfProc is supplied, the NEXT key
causes the selection and input focus to move to the next text or window item in the form.
See NEXT key in this chapter for further explanation.

If SPECIALKeyboard is supplied, it allows clients to make a special keyboard available to
the user when typing into a text or number field. '

May raise Error[notAFormWindow, duplicateitemKey].

MakeDecimalltem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NiL,
suffix: xstring.Reader « Nit,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
signed: BOOLEAN « FALSE,
width: CARDINAL, -- in screen dots --
initDecimal: xLReal.Number « XLReal.zero,
wrapUnderTag: BOOLEAN «FALSE,
hintsProc: TextHintsProc «Nit,
nextOutOfProc: NextOutOfProc « NiL,

ViewPoint Programmer’s Manual 26

displayTemplate: xstring.Reader «nNiL,
SPECIALKeyboard: Blackkeys.Keyboard «NiL];

Creates a decimal item. A decimal item is a text item that has a value of type
XLReal.Number. (See MakeTextltem above for details of text items.) The user can type any
text into the decimal item, but when the client calls GetDecimallitemValue to retrieve the
value, FormWindow converts the string to XLReal.Number. initDecimal is the initial
decimal value to place in the item. displayTemplate parameter is defined as in the
XLReal.PictureReal. xLReal.PictureReal displays the value of the decimal item. The client
may provide a keyboard interpretation with the SPECIALKeyboard parameter (see
Chapter §9.2.1). May raise Error[notAFormWindow, duplicateitemKey].

Makelntegeritem: PROCEDURE [
window: window.Handle,
myKey: ItemKey,
tag: xstring.Reader « NiL,
suffix: xstring.Reader «ni,
visibility: Visibility « visible,
boxed: BOOLEAN « TRUE,
readOnly: BOOLEAN « FALSE,
signed: BOOLEAN « FALSE,
width: cArRDINAL, -- in screen dots --
initinteger: LONG INTEGER « 0,
wrapUnderTag: BOOLEAN «FALSE,
hintsProc: TextHintsProc i,
nextOutOfProc: NextOutOfProc « NiL,
SPECIALKeyboard: Blackkeys.Kaeyboard «NiL |;

Creates an integer item. An integer item is a text item that has a value of type LONG
INTEGER. (See MakeTextltem above for details of text items.) The user can type any text
into the integer item, but when the client calls GetIntegeritemValue to retrieve the value,
FormWindow converts the string to a LONG INTEGER. initinteger is the initial number to
place in the item. The client may provide a keyboard interpretation with the
SPECIALKeyboard parameter (see §9.2.1). May raise Error[notAFormWindow,
duplicateltemKey]. :

TextHintAction: Tyre = {replace, append, nil};

TextHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey]
RETURNS [
hints: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody,
freeHints: FreeTextHintsProc,
hintAction: TextHintAction « replace];

FreeTextHintsProc: TYPE = PROCEDURE [
window: window.Handle,
item: ItemKey,
hints: LONG DESCRIPTOR FOR ARRAY OF XString.ReaderBody];

26-15

26

FormWindow

The client may provide a TextHintsProc to MakeTextitem, MakeDecimalltem, and
Makeintegeritem. Whenever the user points at the mouse menu for a text item, this
procedure is called. The hints returned are used to construct a pop-up menu that is
displayed.

When the user selects one of the strings from the pop-up menu, one of three things happen,
depending on the hintAction returned by the TextHintsProc. If hintAction = replace, the
selected string replaces the current value of the text item. If hintAction = append, the
selected string is appended to the current value of the text item. If hintAction = nil, the
current value of the text item does not change hintAction = nil is useful for displaying
“help-like” information to the user for text items that do not have a finite number of
possible values, such as a file name.

freeHints is a procedure that is called after the hint menu has been taken down to allow
the client to free any storage that was allocated when creating the hints array.

26.2.2.6 Window Items

26-16

MakeWindowltem: PROCEDURE [
window: window.Handle,
myKey: [temKey,
tag: xstring.Reader « NIL,
visibility: Visibility «visible,
boxed: BOOLEAN « TRUE,
size: window.Dims,
nextintoProc: NextintoProc « NiL]
RETURNS [clientWindow: window.Handle];

Creates a window item. A window item is a window (Window.Handle) that is a child of the
FormWindow. It can contain anything the client desires. A window with dimensions size
is created and returned as clientWindow. [t is expected that the client will associate a
display procedure (see window.SetDisplayProc) and a Tip.NotifyProc with the window. The
window may be treated just like any other window, except FormWindow.SetWindowltemSize
must be used to change the size of the window rather than calling window.SlideAndSize
directly. This allows FormWindow to move any other items, if necessary, to accommodate
the different-sized window item.

If nextintoProc is supplied, it is called when the user presses the NEXT key in an item just
before this window item. This gives the window item an opportunity to gain control of the
NEXT key by setting the input focus to be the window item’s window. The window item
may then retain control of the NEXT key within the window item. When the window item
no longer wants to process the NEXT key (for instance, when the NEXT key should move the
selection outside the window item), the window item client must call
FormWindow.TakeNEXTKey, which returns the NEXT key processing to the form window.
(See §26.2.10 for an explanation of the NEXT key.)

May raise Error[notAFormWindow, duplicateitemKey].

SetWindowitemSize: PROCEDURE [
window: window.Handle,
windowltemKey: ItemKey,
newsSize: Window.Dims];

ViewPoint Programmer’s Manual 26

SetWindowlitemSizeExtra: PROCEDURE [
window: window.Handle,’
windowltemKey: ItemKey,
newsSize: window.Dims,
repaint: BOOLEAN « TRUE];

SetWindowltemsSize (or SetWindowltemSizeExtra) is used to change the size of a window
item’s window. The client should never call window.SlideAndSize directly. Any items
below the window item are moved down or up to accommodate the new dimensions.
window is the form window that the window item is in. windowltemKey must be the key
of a window item. newSize indicates the new dimensions. SetWindowitemSizeExtra is
defined in FormWindowExtra.mesa. May raise Error[notAFormWindow,
invaliditemKey, wrongltemType].

26.2.2.7 Destroying [tems

Destroyltem: PROCEDURE [
window:window.Handle,
item: ItemKey,
repaint: BOOLEAN « TRUE];

Destroyltem destroys item. Most clients do not need to use this procedure, because
FormWindow.Destroy destroys all the items in the FormWindow. May raise
Error[notAFormWindow, invaliditemK